4. Tutorial Analysis II for MCS
 Summer Term 2006

(1) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. We write

$$
\lim _{n \rightarrow \infty} x_{n}=\infty
$$

if

$$
(\forall M \in \mathbb{R})(\exists m \in \mathbb{N})(\forall n \geq m)\left(x_{n}>M\right)
$$

(2) Let X be a subset of a metric space, and let a be an accumulation point of X. Let furthermore $f: X \rightarrow \mathbb{R}$. If

$$
(\forall M \in \mathbb{R})(\exists \delta>0)(\forall x \in X)(d(x, a)<\delta \Rightarrow f(x)>M)
$$

then we say that $f(x)$ goes to infinity as x approaches a, and we write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

(3) Let $X \subseteq \mathbb{R}$ and let $a \in \mathbb{R}$ be an accumulation point of $X \cap] a, \infty[$. Let furthermore $f: X \rightarrow \mathbb{R}$. If

$$
(\forall M \in \mathbb{R})(\exists \delta>0)(\forall x \in X \cap] a, \infty[)(d(x, a)<\delta \Rightarrow f(x)>M)
$$

then we say that $f(x)$ goes to infinity as x approaches a from above, and we write

$$
\lim _{\substack{x \rightarrow a \\ x>a}} f(x)=\infty
$$

(4) Let now $a \in \mathbb{R}$ and $f:] a, \infty[\rightarrow \mathbb{R}$. For $l \in \mathbb{R}$ we say that $f(x)$ converges to l as x goes to infinity, and we write

$$
\lim _{x \rightarrow \infty} f(x)=l,
$$

if

$$
\lim _{\substack{y \rightarrow 0 \\ y>0}} f\left(\frac{1}{y}\right)=l .
$$

If

$$
\lim _{\substack{y \rightarrow 0 \\ y>0}} f\left(\frac{1}{y}\right)=\infty
$$

then we write

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

and we say that $f(x)$ goes to infinity as x goes to infinity.
When saying that a certain limit exists, without specifying that the sequence (of reals) or the function (taking values in the reals) goes to infinity, we will take it to imply that the limit is a real number.

(T4.1)

Define in a similar way:
(i) $\lim _{n \rightarrow \infty} x_{n}=-\infty$, for a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers.
(ii) $\lim _{x \rightarrow a} f(x)=-\infty$, for an accumulation point a of a subset X of a metric space, and for $f: X \rightarrow \mathbb{R}$.
(iii)

$$
\lim _{\substack{x \rightarrow a \\ x<a}} f(x)=\infty,
$$

for $X \subseteq \mathbb{R}, f: X \rightarrow \mathbb{R}$ and an a which is an accumulation point of $X \cap]-\infty, a[$.
(iv) $\lim _{x \rightarrow-\infty} f(x)=l$ and $\lim _{x \rightarrow-\infty} f(x)=\infty$ for $\left.f:\right]-\infty, a[\rightarrow \mathbb{R}, a \in \mathbb{R}$.

(T4.2)

(i) Prove the following version of the rule of Bernoulli and de l'Hôpital:

Let $a<b \in \mathbb{R}$ and $f, g:] a, b[\rightarrow \mathbb{R}$ be differentiable and such that

$$
\lim _{\substack{x \rightarrow a \\ x>a}} f(x)=\lim _{\substack{x \rightarrow a \\ x>a}} g(x)=\infty .
$$

Assume

$$
\lim _{\substack{x \rightarrow a \\ x>a}} g^{\prime}(x) \neq 0,
$$

that is, the limit exists and is not 0 . Assume further that there exists $l \in \mathbb{R}$ such that

$$
\lim _{\substack{x \rightarrow a \\ x>a}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l .
$$

Then

$$
\lim _{\substack{x \rightarrow a \\ x>a}} \frac{f(x)}{g(x)}=l .
$$

Hint:

Argue first that there exists a $\delta>0$ such that for $x \in] a, a+\delta[$ we have $g(x)>1$ and $g^{\prime}(x) \neq 0$, and such that for $\left.x \in\right] a, a+\delta[$ we have that

$$
u(x):=\inf \{y>a: f(y) \leq \sqrt{f(x)} \wedge g(y) \leq \sqrt{g(x)}\}
$$

exists.
Prove then that

$$
\lim _{\substack{x \rightarrow a \\ x>a}} u(x)=a .
$$

Use this together with the generalized mean value theorem to finish the proof.
(ii) Prove the following version of the rule of Bernoulli and de l'Hôpital:

Let $a \in \mathbb{R}$ and $f, g:[a, \infty[\rightarrow \mathbb{R}$ be differentiable and such that

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty
$$

Assume that

$$
\lim _{x \rightarrow \infty} g^{\prime}(x) \neq 0
$$

Assume further that there exists $l \in \mathbb{R}$ such that

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l .
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=l .
$$

(T4.3)
(i) Prove that for all $n \in \mathbb{N}$ we have

$$
\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0
$$

(ii) Let $n \in \mathbb{N}$ and let $P: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $P(x):=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ with $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$. Prove that

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{e^{x}}=0 .
$$

