Fachbereich Mathematik Dr. L. Leuştean K. Altmann, E. Briseid, S. Herrmann

20.04.2006

1. Tutorial Analysis II for MCS Summer Term 2006

(T1.1) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that if the derivative of f has at most k distinct zeros, then f has at most k+1 distinct zeros. Hint: Use Rolle's Theorem.

(T1.2) Let $A \subseteq \mathbb{R}$ be an open set and let $f: A \to \mathbb{R}$ be a continuous function, which is differentiable on $A \setminus \{x_0\}$ for some $x_0 \in A$. Prove that if $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f'(x)$ exists, then f is

differentiable at x_0 and $f'(x_0) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} f'(x)$.