Fachbereich Mathematik
Dr. L. Leuştean
K. Altmann, E. Briseid, S. Herrmann

1. Tutorial Analysis II for MCS Summer Term 2006

(T1.1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that if the derivative of f has at most k distinct zeros, then f has at most $k+1$ distinct zeros.
Hint: Use Rolle's Theorem.
(T1.2) Let $A \subseteq \mathbb{R}$ be an open set and let $f: A \rightarrow \mathbb{R}$ be a continuous function, which is differentiable on $A \backslash\left\{x_{0}\right\}$ for some $x_{0} \in A$. Prove that if $\lim _{\substack{x \rightarrow x_{0} \\ x \neq x_{0}}} f^{\prime}(x)$ exists, then f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ x \neq x_{0}}} f^{\prime}(x)$.

