13.07.2006

13. Home work Analysis II for MCS Summer Term 2006

(H13.1)

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right) .
$$

(i) Show that f is differentiable and compute its derivative.
(ii) Show that f is locally invertible around every point in \mathbb{R}^{2}.
(iii) Show that f does not have a global inverse.

(H13.2)

Let us consider the following system of equations:

$$
\begin{aligned}
x^{2}+4 y^{2}+9 z^{2} & =1 \\
x+y+z & =0 .
\end{aligned}
$$

(i) Show that this system can be solved uniquely with respect to y and z,

$$
\binom{y}{z}=g(x)
$$

in a neighborhood of the point $(0,1 / \sqrt{13},-1 / \sqrt{13})$.
(ii) Compute $g^{\prime}(0)$.

(H13.3)

Let $a \in \mathbb{R}$, and define $h_{1}, h_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
h_{1}(x, y)=x \cos a-y \sin a
$$

and

$$
h_{2}(x, y)=x \sin a+y \cos a .
$$

We will write $u=h_{1}(x, y)$ and $v=h_{2}(x, y)$. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function from \mathbb{R}^{2} into \mathbb{R}, and let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $g(x, y)=f\left(h_{1}(x, y), h_{2}(x, y)\right)$. Prove that

$$
\left(\frac{\partial g}{\partial x}(x, y)\right)^{2}+\left(\frac{\partial g}{\partial y}(x, y)\right)^{2}=\left(\frac{\partial f}{\partial u}(u, v)\right)^{2}+\left(\frac{\partial f}{\partial v}(u, v)\right)^{2} .
$$

