Dr. L. Leuştean
K. Altmann, E. Briseid, S. Herrmann

TECHNISCHE
UNIVERSITÄT
DARMSTADT
29.06.2006

11. Home work Analysis II for MCS Summer Term 2006

(H11.1)

Compute the arc length of the following curves.
(i) Let $0<a<b<\infty$. We define $f:[a, b] \rightarrow \mathbb{R}^{2}, f(t)=\left(t^{3}, \frac{3}{2} t^{2}\right)$.
(ii) We define

$$
\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}, \quad t \mapsto((1+\cos t) \cos t,(1+\cos t) \sin t)
$$

(H11.2)

We define the following relation for paths. Two paths $f_{j}:\left[a_{j}, b_{j}\right] \rightarrow X, j=1,2$, are called equivalent if there is a strictly isotone surjective function $\sigma:\left[a_{1}, b_{1}\right] \rightarrow\left[a_{2}, b_{2}\right]$ such that $f_{1}=f_{2} \circ \sigma$. That is, if there exists a change of parameters $\sigma:\left[a_{1}, b_{1}\right] \rightarrow\left[a_{2}, b_{2}\right]$ such that f_{1} is obtained from f_{2} by σ, and moreover, σ is strictly isotone.

Prove that this relation is indeed an equivalence relation on the set of all curves in a fixed metric space X.
(This is Remark 8.15 in the handouts.)

(H11.3)

Prove the following:
The image of a rectifiable curve in \mathbb{R}^{2} does not contain the square $[0,1]^{2}$.
(Conclude that $\gamma_{s c}$ as defined in Tutorial 11 is not rectifiable.)
Hint: Let $\delta:[a, b] \rightarrow \mathbb{R}^{2}$ be a rectifiable curve and assume that $Q=[0,1]^{2} \subseteq \delta([a, b])$. Let $n \in \mathbb{N}$ and define a subset $M \subseteq Q$ by

$$
M=\left\{\left(\frac{p}{n}, \frac{q}{n}\right): 0 \leq p, q \leq n\right\}
$$

Remark that according to our assumption there are points $t_{1}<t_{2}<\ldots<t_{(n+1)^{2}}$ of $[a, b]$ such that $\delta\left(\left\{t_{1}, \ldots, t_{(n+1)^{2}}\right\}\right)=M$. Consider a partition P of $[a, b]$ containing the points $t_{1}<\ldots<t_{(n+1)^{2}}$.

