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K. Altmann, E. Briseid, S. Herrmann

TECHNISCHE
UNIVERSITÄT
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(H11.1)

Compute the arc length of the following curves.

(i) Let 0 < a < b <∞. We define f : [a, b]→ R2, f(t) = (t3, 3
2
t2).

(ii) We define

γ : [0, 2π]→ R2, t 7→ ((1 + cos t) cos t, (1 + cos t) sin t).

(H11.2)

We define the following relation for paths. Two paths fj : [aj, bj]→ X, j = 1, 2, are called
equivalent if there is a strictly isotone surjective function σ : [a1, b1] → [a2, b2] such that
f1 = f2 ◦ σ. That is, if there exists a change of parameters σ : [a1, b1]→ [a2, b2] such that
f1 is obtained from f2 by σ, and moreover, σ is strictly isotone.

Prove that this relation is indeed an equivalence relation on the set of all curves in a fixed
metric space X.

(This is Remark 8.15 in the handouts.)

(H11.3)

Prove the following:

The image of a rectifiable curve in R2 does not contain the square [0, 1]2.

(Conclude that γsc as defined in Tutorial 11 is not rectifiable.)

Hint: Let δ : [a, b]→ R2 be a rectifiable curve and assume that Q = [0, 1]2 ⊆ δ([a, b]). Let
n ∈ N and define a subset M ⊆ Q by

M =
{(p

n
,
q

n

)
: 0 ≤ p, q ≤ n

}
.

Remark that according to our assumption there are points t1 < t2 < . . . < t(n+1)2 of [a, b]
such that δ({t1, . . . , t(n+1)2}) = M . Consider a partition P of [a, b] containing the points
t1 < . . . < t(n+1)2 .
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