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(H10.1)

Consider the vector space (C[0, 1], ‖ · ‖∞) of continuous functions f : [0, 1] → R equipped
with the supremum norm. For n ∈ N let Pn ⊂ C[0, 1] be the finite dimensional subspace
of polynomials of degree less than or equal to n. We then call pb ∈ Pn a polynomial of best
approximation to f ∈ C[0, 1] if

‖f − pb‖∞ = inf{‖f − p‖∞ : p ∈ Pn}.

(i) Prove that any polynomial pb ∈ Pn of best approximation to f satisfies ‖pb‖∞ ≤
2‖f‖∞.

(ii) Prove that each f ∈ C[0, 1] possesses a polynomial pb ∈ Pn of best approximation.

(H10.2)

Define fn : R→ R for each n ∈ N by

fn(x) :=
sin(nx)

n
.

(i) Show that (fn) converges uniformly on R and determine its limit function f : R→ R.

(ii) Show that the sequence of derivatives (f ′
n) does not converge (not even pointwise).

(H10.3)

Let (fn) be a sequence of real-valued functions on a set X. We say that (fn) is uniformly
Cauchy if for every ε > 0 there exists N ∈ N such that |fn(x)−fm(x)| < ε for all n,m ≥ N
and all x ∈ X.

Prove that (fn) is uniformly convergent to some f : X → R if and only if it is uniformly
Cauchy.
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