8. Home work Analysis II for MCS Summer Term 2006

(H8.1)

Determine which of the following define norms on \mathbb{R}^{3}.
(i) $\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|:=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
(ii) $\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|:=\left|x_{1}\right|$.
(iii) $\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|:=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}+\left|x_{3}\right|$.
(iv) $\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|:=\left(\sqrt{\left|x_{1}\right|}+\sqrt{\left|x_{2}\right|}+\sqrt{\left|x_{3}\right|}\right)^{2}$.

(H8.2)

Let $\left(V,\|\cdot\|_{1}\right)$ and $\left(W,\|\cdot\|_{2}\right)$ be normed vector spaces over $\mathbb{K}, \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.
Recall that $V \times W=\{(v, w): v \in V \wedge w \in W\}$ becomes a vector space when we define

$$
\begin{aligned}
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right) & :=\left(v_{1}+v_{2}, w_{1}+w_{2}\right), \\
r\left(v_{1}, w_{1}\right) & :=\left(r v_{1}, r w_{1}\right),
\end{aligned}
$$

for $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$ and $r \in \mathbb{K}$.
Define $\|\cdot\|: V \times W \rightarrow \mathbb{R}$ by $\|(v, w)\|:=\|v\|_{1}+\|w\|_{2}$. Show that $\|\cdot\|$ is a norm on $V \times W$.

(H8.3)

Let $(V,\|\cdot\|)$ be a normed space which contains at least two distinct elements. Prove that for $r \in[0, \infty[$ there is an element $x \in V$ with norm r. Conclude that normed spaces which contain at least two distinct elements cannot be bounded.

