Fachbereich Mathematik Dr. L. Leuştean K. Altmann, E. Briseid, S. Herrmann

11.05.2006

4. Home work Analysis II for MCS Summer Term 2006

(H4.1)

Determine the local maxima and minima of the following function:

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(x) := \frac{x}{1+x^2}.$$

(H4.2)

Prove the following version of the rule of Bernoulli and de l'Hôpital:

Let $a \in \mathbb{R}$ and let $f :]a, \infty[\to \mathbb{R} \text{ and } g :]a, \infty[\to \mathbb{R} \text{ be functions. Assume that:}$

(1) There is a $M \in \mathbb{R}$ such that f and g are differentiable on $]M, \infty[$, and such that $g(x) \neq 0$ and $g'(x) \neq 0$ for x > M.

(2) The limit $l = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ exists.

(3)
$$\lim_{x\to\infty} f(x) = 0$$
 and $\lim_{x\to\infty} g(x) = 0$.

Then the limit

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$

exists and coincides with l.

(This exercise has with hindsight been modified to make life easier for you. The same holds true for (T4.2).)