4. Home work Analysis II for MCS Summer Term 2006

(H4.1)
Determine the local maxima and minima of the following function:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x):=\frac{x}{1+x^{2}}
$$

(H4.2)
Prove the following version of the rule of Bernoulli and de l'Hôpital:
Let $a \in \mathbb{R}$ and let $f:] a, \infty[\rightarrow \mathbb{R}$ and $g:] a, \infty[\rightarrow \mathbb{R}$ be functions. Assume that:
(1) There is a $M \in \mathbb{R}$ such that f and g are differentiable on $] M, \infty[$, and such that $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$ for $x>M$.
(2) The limit $l=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.
(3) $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} g(x)=0$.

Then the limit

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}
$$

exists and coincides with l.
(This exercise has with hindsight been modified to make life easier for you. The same holds true for (T4.2).)

