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(G14.1)

(i) Show that the equation x3 + y2 − 2xy = 0 may be solved uniquely for (x, y) near
(1, 1) with respect to x and that the obtained function x = ϕ(y) is continuously
differentiable near y = 1. Calculate ϕ′(1).

(ii) Show that ϕ is two times continuously differentiable near y = 1 and calculate ϕ′′(1).

(iii) Is the equation uniquely solvable with respect to y near (1, 1)?

(G14.2)

Prove that the map F : R2 → R2 with

F (x, y) =

(
x2 − y2

2xy

)
is locally invertible for (x, y) 6= (0, 0). Is F also globally invertible? Compute the preimage
F−1({(a, b)}) of an arbitrary point (a, b) ∈ R2 \ {(0, 0)}.

(G14.3) (Supplementary)

Find the global maximum and minimum of the function

f(x, y) = 2x2 + xy +
5

4
y2 − 2x− 2y

on the unit square S = [0, 1]× [0, 1].

Hint: To compute the global extrema of a function f defined on a compact subset K of
Rn, you have to compute the local extrema on the interior of K and the global extrema on
the boundary of K.

(G14.4) (Supplementary)

Let f : Rn → Rn a continiously differentiable function and f ′(x) invertible for all x ∈ Rn.
Prove that f is open, i. e. f(U) is open for each open set U ⊆ Rn.
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