14. Exercise sheet Analysis II for MCS Summer Term 2006

(G14.1)
(i) Show that the equation $x^{3}+y^{2}-2 x y=0$ may be solved uniquely for (x, y) near $(1,1)$ with respect to x and that the obtained function $x=\varphi(y)$ is continuously differentiable near $y=1$. Calculate $\varphi^{\prime}(1)$.
(ii) Show that φ is two times continuously differentiable near $y=1$ and calculate $\varphi^{\prime \prime}(1)$.
(iii) Is the equation uniquely solvable with respect to y near $(1,1)$?

(G14.2)

Prove that the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
F(x, y)=\binom{x^{2}-y^{2}}{2 x y}
$$

is locally invertible for $(x, y) \neq(0,0)$. Is F also globally invertible? Compute the preimage $F^{-1}(\{(a, b)\})$ of an arbitrary point $(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.

(G14.3) (Supplementary)

Find the global maximum and minimum of the function

$$
f(x, y)=2 x^{2}+x y+\frac{5}{4} y^{2}-2 x-2 y
$$

on the unit square $S=[0,1] \times[0,1]$.
Hint: To compute the global extrema of a function f defined on a compact subset K of \mathbb{R}^{n}, you have to compute the local extrema on the interior of K and the global extrema on the boundary of K.

(G14.4) (Supplementary)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a continiously differentiable function and $f^{\prime}(x)$ invertible for all $x \in \mathbb{R}^{n}$. Prove that f is open, i. e. $f(U)$ is open for each open set $U \subseteq \mathbb{R}^{n}$.

