13.07.2006

13. Exercise sheet Analysis II for MCS Summer Term 2006

(G13.1)

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(x, y, z)=e^{z} y+x^{2} y^{2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$,

$$
g(t)=\left(\begin{array}{c}
2 t^{2} \\
\sin t \\
e^{t}
\end{array}\right)
$$

Compute the derivative of $f \circ g$ in two different ways.
(i) Directly by computing $h(t)=f(g(t))$ and differentiating h.
(ii) By using the chain rule.

(G13.2)

Let us consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f\left(x_{1}, x_{2}\right):=\binom{x_{1}+x_{2} \cos x_{1}}{x_{2} e^{x_{1} x_{2}}}
$$

Prove that the equation $f(x)=z$ for z near $(0,0)$ possesses a unique solution $x=g(z)$ near $(0,0)$. Show that g is continuously differentiable near $(0,0)$ and compute $g^{\prime}(0,0)$.

(G13.3)

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

$$
f(x, y, z)=\binom{z^{2}+x y-2}{z^{2}+x^{2}-y^{2}-1} .
$$

Remark that

$$
f(1,1,1)=\binom{0}{0}
$$

Consider the equations

$$
\begin{array}{ll}
z^{2}+x y-2 & =0 \\
z^{2}+x^{2}-y^{2}-1 & =0
\end{array}
$$

and find for some neighborhood U of $z=1$ in \mathbb{R} a curve of solutions $\gamma: U \rightarrow \mathbb{R}^{2}$, $\gamma(z)=\binom{\gamma_{1}}{\gamma_{2}}$, passing through $\binom{1}{1}$ at $z=1$. Prove that γ is continuously differentiable and compute γ^{\prime}.

