06.07.2006

12. Exercise sheet Analysis II for MCS Summer Term 2006

(G12.1)

Let V and W be Banach spaces. We say that a function $A: V \rightarrow W$ is affine if there exist $c \in W$ and linear $T: V \rightarrow W$ such that

$$
A(x)=T(x)+c
$$

for all $x \in V$. Prove that any continuous affine function $A: V \rightarrow W$ is differentiable. Show also that if $A(x)=T(x)+c$ for $x \in V$, then $A^{\prime}(x)=T$ for any $x \in V$.

(G12.2)

Let

$$
U=\{(r, \phi): r>0, \quad 0<\phi<2 \pi\} \subseteq \mathbb{R}^{2}
$$

and let

$$
f=\binom{f_{1}}{f_{2}}: U \rightarrow \mathbb{R}^{2}
$$

be defined by

$$
\begin{aligned}
f_{1}(r, \phi) & =r \cos \phi, \\
f_{2}(r, \phi) & =r \sin \phi .
\end{aligned}
$$

We write $x=f_{1}(r, \phi)$ and $y=f_{2}(r, \phi)$.
(i) Notice that f is injective with range

$$
f(U)=\mathbb{R}^{2} \backslash\{(x, 0): x \geq 0\} .
$$

Show that f has a continuous inverse $f^{-1}: f(U) \rightarrow \mathbb{R}^{2}$.
(ii) Prove that f is differentiable, and compute the Jacobi matrix of f.
(iii) Prove that f^{-1} is differentiable, and compute the Jacobi matrix of f^{-1}.

(G12.3)

Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}x^{2} y \sin \left(\frac{y}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(i) Compute the partial derivatives of f where they exist and show that $\partial_{1} f$ is not continuous in any point $(0, y)$ with $y \neq 0$.
Hint for the latter: For $y \neq 0$, consider the points $\left(x_{n}, y_{n}\right)=(y /(n \pi), y)$ for $n \in \mathbb{N}$.
(ii) Decide whether f is differentiable in $(0, y)$, for $y \in \mathbb{R}$.

