11. Exercise sheet Analysis II for MCS Summer Term 2006

(G11.1)

Compute the arc length of the following paths.
(i) $f:[0,2 \pi] \rightarrow \mathbb{R}^{3}, f(t)=(r \cos t, r \sin t, c t)$, where $r, c>0$.
(ii) $g:[0,2 \pi] \rightarrow \mathbb{R}^{2}, g(t)=(t-\sin t, 1-\cos t)$.

(G11.2)

Let (X, d) be a metric space, and let $a \leq b \in \mathbb{R}$ and $c \leq d \in \mathbb{R}$. Let $\gamma^{\prime}:[c, d] \rightarrow X$ be a path obtained from a path $\gamma:[a, b] \rightarrow X$ by a change of parameter. Prove that $L(\gamma)=L\left(\gamma^{\prime}\right)$.
(This is Proposition 8.13 in the handouts.)

(G11.3)

Let (X, d) be a metric space, and let $a \leq b \in \mathbb{R}$. Let $\gamma:[a, b] \rightarrow X$ be a path in X. Prove that for all $c \in[a, b]$ we have

$$
L(\gamma)=L\left(\left.\gamma\right|_{[a, c]}\right)+L\left(\left.\gamma\right|_{[c, b]}\right) .
$$

(Recall that $\left.\gamma\right|_{[a, c]}:[a, c] \rightarrow X$ is the restriction of γ to $[a, c]$, i.e. $\left.\gamma\right|_{[a, c]}(x)=\gamma(x)$ for $x \in[a, c]$.)
(This is Proposition 8.17 in the handouts.)

