

22.06.2006

10. Exercise sheet Analysis II for MCS Summer Term 2006

(G10.1)

For each $n \in \mathbb{N}$ define $f_n : [0, \infty[\to \mathbb{R}$ by $f_n(x) := x^n/(1+x^n)$.

- (i) Show that f_n is bounded, for each $n \in \mathbb{N}$.
- (ii) Show that the sequence $(f_n)_n$ converges uniformly on the interval [0, c] for any number 0 < c < 1.
- (iii) Show that the sequence $(f_n)_n$ converges uniformly on the interval $[b, \infty]$ for b > 1, but not on the interval $[1, \infty]$.

(G10.2)

Let $(V, \|\cdot\|)$ be a normed space. For a non-zero element $x \in V$ we say that $x/\|x\|$ is the *normalized* element corresponding to x. We then denote $x/\|x\|$ by u(x).

Let $x, y \in V$ be non-zero. Prove that

$$||u(x) - u(y)|| \le 2 \frac{||x - y||}{||x||}.$$

(G10.3) (Supplementary exercise)

Prove Dini's Theorem:

Let X be a compact metric space. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions with $f_n : X \to \mathbb{R}$ for each $n \in \mathbb{N}$. Suppose that for each $x \in X$ the sequence $(f_n(x))_{n\in\mathbb{N}}$ is increasing and bounded. Let $f : X \to \mathbb{R}$ be the pointwise limit of $(f_n)_{n\in\mathbb{N}}$, i.e.

$$f(x) = \sup_{n \in \mathbb{N}} f_n(x)$$

for all $x \in X$. Suppose further that f is continuous. Then the sequence $(f_n)_{n \in \mathbb{N}}$ converges uniformly to f.