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(G9.1)

Let V be a K-vector space, K ∈ {R,C}. Recall that we say that a norm ‖ · ‖1 on V is
equivalent to a norm ‖ · ‖2 on V if there exist positive numbers c, C ∈ ]0,∞[ such that

(∀x ∈ V )(c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1).

Prove that this relation is an equivalence relation on the set of all norms on V .

(This is Remark 6.19 in the handouts.)

(G9.2)

Let V be a K-vector space, K ∈ {R,C}. Suppose that ‖ · ‖1 and ‖ · ‖2 are equivalent norms
on V . Prove that for any subset A ⊆ V , x ∈ V and any sequence (xn)n∈N in V the following
hold:

(i) (xn)n∈N is Cauchy in (V, ‖ · ‖1) if and only if (xn)n∈N is Cauchy in (V, ‖ · ‖2).

(ii) limn→∞ xn = x in (V, ‖ · ‖1) if and only if limn→∞ xn = x in (V, ‖ · ‖2).

(iii) A is open in (V, ‖ · ‖1) if and only if A is open in (V, ‖ · ‖2), and A is bounded in
(V, ‖ · ‖1) if and only if A is bounded in (V, ‖ · ‖2).

(This is a part of Proposition 6.20 in the handouts.)

(G9.3)

Let a < b ∈ R and let C([a, b]) be the R-vector space of all continuous functions
f : [a, b]→ R. Recall that we for any 1 ≤ p < ∞ can define a norm ‖ · ‖p : C([a, b])→ R
on C([a, b]) by letting

‖f‖p :=

(∫ b

a

|f |p
)1/p

.
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Let I([a, b]) be the R-vector space of all Riemann integrable functions f : [a, b]→ R. Define
‖ · ‖p : I([a, b])→ R for any 1 ≤ p <∞ by

‖f‖p :=

(∫ b

a

|f |p
)1/p

.

Show that ‖ · ‖p is not a norm on I([a, b]).
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