9. Exercise sheet Analysis II for MCS Summer Term 2006

(G9.1)
Let V be a \mathbb{K}-vector space, $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Recall that we say that a norm $\|\cdot\|_{1}$ on V is equivalent to a norm $\|\cdot\|_{2}$ on V if there exist positive numbers $\left.c, C \in\right] 0, \infty[$ such that

$$
(\forall x \in V)\left(c\|x\|_{1} \leq\|x\|_{2} \leq C\|x\|_{1}\right)
$$

Prove that this relation is an equivalence relation on the set of all norms on V.
(This is Remark 6.19 in the handouts.)
(G9.2)
Let V be a \mathbb{K}-vector space, $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Suppose that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent norms on V. Prove that for any subset $A \subseteq V, x \in V$ and any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in V the following hold:
(i) $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $\left(V,\|\cdot\|_{1}\right)$ if and only if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in $\left(V,\|\cdot\|_{2}\right)$.
(ii) $\lim _{n \rightarrow \infty} x_{n}=x$ in $\left(V,\|\cdot\|_{1}\right)$ if and only if $\lim _{n \rightarrow \infty} x_{n}=x$ in $\left(V,\|\cdot\|_{2}\right)$.
(iii) A is open in $\left(V,\|\cdot\|_{1}\right)$ if and only if A is open in $\left(V,\|\cdot\|_{2}\right)$, and A is bounded in $\left(V,\|\cdot\|_{1}\right)$ if and only if A is bounded in $\left(V,\|\cdot\|_{2}\right)$.
(This is a part of Proposition 6.20 in the handouts.)
(G9.3)
Let $a<b \in \mathbb{R}$ and let $C([a, b])$ be the \mathbb{R}-vector space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. Recall that we for any $1 \leq p<\infty$ can define a norm $\|\cdot\|_{p}: C([a, b]) \rightarrow \mathbb{R}$ on $C([a, b])$ by letting

$$
\|f\|_{p}:=\left(\int_{a}^{b}|f|^{p}\right)^{1 / p}
$$

Let $I([a, b])$ be the \mathbb{R}-vector space of all Riemann integrable functions $f:[a, b] \rightarrow \mathbb{R}$. Define $\|\cdot\|_{p}: I([a, b]) \rightarrow \mathbb{R}$ for any $1 \leq p<\infty$ by

$$
\|f\|_{p}:=\left(\int_{a}^{b}|f|^{p}\right)^{1 / p} .
$$

Show that $\|\cdot\|_{p}$ is not a norm on $I([a, b])$.

Orientation Colloquium
 The Department of Mathematics' Research Groups present themselves.

$$
\begin{gathered}
\text { Monday, } 19.06 .2006-16: 15-17: 15-\text { S207 /109 } \\
\text { Dr. rer. nat. Patrizio Neff } \\
\text { FG Analysis } \\
\text { "Exkursionen in die nichtlineare Elastizität und Plastizität - } \\
\text { Herausforderungen an die angewandte Mathematik" }
\end{gathered}
$$

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.

