Fachbereich Mathematik Dr. L. Leuştean K. Altmann, E. Briseid, S. Herrmann

08.06.2006

8. Exercise sheet Analysis II for MCS Summer Term 2006

(G8.1)

For $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, define

$$||x||_{\infty} := \max\{|x_1|, \dots, |x_n|\}$$

and

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p},$$

for $1 \leq p < \infty$.

- (i) Prove that $\|\cdot\|_{\infty}$ and $\|\cdot\|_p$, for $1 \le p < \infty$, are norms on \mathbb{K}^n .
- (ii) Draw the closed unit balls in $(\mathbb{R}^2, \|\cdot\|_{\infty})$, $(\mathbb{R}^2, \|\cdot\|_1)$ and $(\mathbb{R}^2, \|\cdot\|_2)$. Recall that for a normed space $(V, \|\cdot\|)$ the closed unit ball is

$$B_1(0) = \{ x \in V : ||x|| \le 1 \}.$$

(G8.2)

Which of the following define norms on \mathbb{R}^3 ?

- (i) $||(x_1, x_2, x_3)|| = x_1 + x_2 + x_3.$
- (ii) $||(x_1, x_2, x_3)|| = |x_1| + |x_2| + 2|x_3|.$
- (iii) $||(x_1, x_2, x_3)|| = 2(x_1^2 + x_2^2 + x_3^2)^{1/2}.$

(G8.3)

(i) Show that if $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on a vector space V, then $\|\cdot\|: V \to \mathbb{R}$ defined by

$$||v|| := ||v||_1 + ||v||_2$$

for $v \in V$ is also a norm.

(ii) If $\|\cdot\|: V \to \mathbb{R}$ is a norm on the vector space V, for which $a \in \mathbb{R}$ is $a \|\cdot\|$ a norm?