4. Exercise sheet Analysis II for MCS Summer Term 2006

Minitest

Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ be a differentiable function and let x_{0} be an interior point of I. Which of the following statements are correct?
(You should not spend more than 10 minutes on the test.)
\square If f has a local minimum or maximum at x_{0}, then $f^{\prime}\left(x_{0}\right)=0$.
\square If $f^{\prime}\left(x_{0}\right)=0$, then f has a local minimum or maximum at x_{0}.
\square If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right) \neq 0$, then f has a local minimum or maximum at x_{0}.
\square If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)=0$, then f does not have a local minimum or maximum at x_{0}.

(G4.1)

(i) Determine the local maxima and minima of the function

$$
f:] 0, \infty\left[\rightarrow \mathbb{R}, \quad f(x)=x^{x}\right.
$$

(ii) Determine any global maxima and minima of the function $f:[0,2 \pi] \rightarrow \mathbb{R}$ given by $f(x)=e^{x} \sin x$.
Recall that for a set X and a function $g: X \rightarrow \mathbb{R}, g$ attains its global maximum in $a \in X$ if $g(a)=\max g(X)$. In the same way, g attains its global minimum in $a \in X$ if $g(a)=\min g(X)$.

(G4.2) (Leibniz Rule)

Let $D \subseteq \mathbb{R}, n \in \mathbb{N}$, and $f, g: D \rightarrow \mathbb{R}$ be two n-times differentiable functions. Prove the Leibniz Rule:

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)
$$

Hint: Look at the proof of the binomial formula.

