2. Exercise sheet Analysis II for MCS Summer Term 2006

(G2.1)

Let $I \subseteq \mathbb{R}$ be an open interval and let $a \in I$. Let $f: I \rightarrow \mathbb{R}$ be smooth, i.e. let f have derivatives $f^{(k)}$ for all $k \in \mathbb{N}$. Prove with the help of Taylor's formula that

$$
f(a)=f^{\prime}(a)=\ldots=f^{(n)}(a)=0
$$

implies

$$
\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{n}}=0 .
$$

(G2.2)
Prove the following inequality with the aid of the Mean Value Theorem:

$$
\begin{equation*}
1+\frac{x}{2 \sqrt{1+x}} \leq \sqrt{1+x} \leq 1+\frac{x}{2}, \quad-1<x<\infty \tag{1}
\end{equation*}
$$

(G2.3) Supplementary exercise.

Use the previous exercise to conclude that

$$
\begin{equation*}
1+\frac{x}{2+x} \leq \sqrt{1+x} \leq 1+\frac{x}{2}, \quad 0 \leq x<\infty . \tag{2}
\end{equation*}
$$

Use this inequality to estimate $\sqrt{102}$ with accuracy 10^{-3}.

