

18.07.2006

14. Tutorial Analysis II for MCS Summer Term 2006

(T14.1)

- (i) Read page 39 of the script (Contraction Mapping Principle).
- (ii) Prove the uniqueness part of the theorem.
- (iii) Read the proof of the Contraction Mapping Principle (pp. 40-41).

Solution.

- (i) None.
- (ii) Let $x \neq y$ be two fixed points. Then $d(x,y) = d(T(x),T(y)) \leq Kd(x,y)$. This is a contradiction because K < 1.
- (iii) None.

(T14.2)

Let (X,d) be a complete metric space and suppose $T: X \to X$ is a function for which T^N is a contraction for some $N \in \mathbb{N}$. Prove that T has a unique fixed point.

Solution. Applying Banach's Contraction Mapping Principle, T^N has a unique fixed point x. However,

$$T^{N}(T(x)) = T^{N+1}(x) = T(T^{N}(x)) = T(x),$$

so T(x) is also a fixed point of T^N . Since the fixed point of T^N is unique, we must have T(x) = x, so x is a fixed point of T. Let us prove now that it is unique. If $y \in X$ is such that T(y) = y, then $T^N(y) = y$, so (by uniqueness of fixed points of $T^N(y) = x$.

1

IE			
IE T T			
006			
is a			
T^N			
oint			
ave uch			