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(T14.1)

(i) Read page 39 of the script (Contraction Mapping Principle).
(ii) Prove the uniqueness part of the theorem.

(i) Read the proof of the Contraction Mapping Principle (pp. 40-41).
Solution.

(i) None.

(ii) Let z # y be two fixed points. Then d(z,y) = d(T(z), T(y)) < Kd(z,y). This is a
contradiction because K < 1.

(iii) None.

(T14.2)

Let (X, d) be a complete metric space and suppose 7' : X — X is a function for which 7'V
is a contraction for some N € N. Prove that 7" has a unique fixed point.

Solution. Applying Banach’s Contraction Mapping Principle, 7 has a unique fixed point
z. However,
N1 (@) = TV (2) = 71V (2)) = T(2),

so 1'(z) is also a fixed point of 7'V, Since the fixed point of 7"V is unique, we must have
T(z) =z, so z is a fixed point of T". Let us prove now that it is unique. If y € X is such
that 17'(y) = y, then 7V (y) = y, so (by uniqueness of fixed points of 7'V) y = z. ]



