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Space-filling curves

It seems paradoxical, but it is nevertheless true that there are curves which completely fill
up higher dimensional spaces such as squares or cubes. The first example was constructed
by G. Peano in 1890. Curves with this property are now called space-filling curves or
Peano curves. Further examples by D. Hilbert (1891), E.H. Moore (1900), H. Lebesgue
(1904), W. Sierpinski (1912), G. Pélya (1913), and others followed. The basic reference
for this subject is the book

H. Sagan, Space-filling curves, Springer-Verlag, 1994.

In the sequel, we present a modification of Lebesgue’s space-filling curve, due to I.J. Schoen-
berg (1938).

Let f : R — R be the even, two-periodic (i.e. periodic with period two) function defined
by
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The Schoenberg curve is defined by s : [0,1] = [0, 1]2, 7sc(t) = ((t), y(2))-
(T11.1)

Prove the following:

(a) 7se is well-defined, that is, for all £ € [0, 1], v,.(t) € [0, 1],

(b) 7sc is a continuous function.

Hint: For (a) and (b), use the criterion of Weierstra§ (Theorem 7.10).

(c) 7sc is surjective.

Hint: Let (z9,%0) € [0,1]? and consider the binary representations of g, yo:
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(See pages 110-113 in Hofmann, and in particular Theorem 2.37.)
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(a) For any k € Ny, let ¢y, ¥ : R = R, ¢y(t) = f(2 ), wk() = % Since

f(t) €[0,1] for all t € R, we get that 0 < ¢x(t), ¥r(t) < 27 forallt € Rk € Ny,
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E <5> is convergent with E <5> = 2, we can apply the Weierstraf criterion
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(Theorem 7.10) to get that the series Z Pr(1), Zz/}k(t) are uniformly convergent.
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Thus, 0 < a(t), y(t) < 5 > =5 +2=1, hence 7,(t) € [0,1)* for all £ € [0,1].
k=0

(b) It is easy to see that f is continuous, so @y, ¢ are continuous functions for all £ € Ny.
Applying now the fact that the sum of a uniformly convergent series of continuous
functions is a continuous function, we get that x,y are continuous functions, hence
Yse 1S continuous.

(c) Let (g, yo) € [0,1]%. Consider the binary representations of zg, y:
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Let (ck)k>0 be defined by cy = aj and copi1 = by for & > 0. Since 3k_c+kl =3
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and 0 < 1 3 3= 1. We shall prove that vs.(t) = (z0,y0). First, let us remark
that
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Let a = gk +32 (Ck+1+%+ ) Then a > %, and
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Hence, a € 33 + 3| . Since f is two-periodic, it follows immediately by inducti-
on on n that f(2n+t f(t) foralln € Ng,t € R Thus, f (3kt0) = f(2p+a) = f(a).
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If ¢, = 0, then a € {0 ],sof (3%t) = f(a) = 0;if ¢ = 1, then a € [g,l],so
f (3 tg) = f(a) = 1. Thus, f (3’“750) = ¢, for all k£ € Ny. It follows that
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(T11.2)
Read the proof of the following theorem.

Let X and Y be metric spaces, and let f : X — Y be continuous and bijective. Assume
that X is compact. Then the inverse function f~!:Y — X is continuous.

Proof: By (T12.2) in Analysis I we have that each closed subset A of X is compact. So
f(A) €Y is compact, by Theorem 3.51. Hence f(A) is closed, by Proposition 3.45. Thus
f~1is continuous by Proposition 3.13 (iii).

(This result will be used in the exercise below.)

Solution. Not applicable.

(T11.3) (Supplementary exercise)

(Netto’s Theorem)

Prove the following result:

Any bijective map g : [0,1] — [0, 1]? is necessarily discontinuous.

Conclude that ~,. is not injective.

Hint: Remark that if we remove a point from [0,1], we get a disconnected set, while if we
remove a point from [0, 1], the set obtained is pathwise connected.

Solution.

Assume that ¢ is continuous. Since [0,1] is a compact subset of R, it follows by what
we proved above that the inverse function g=' : [0,1]*> — [0,1] is also continuous. Let
us remove a point ¢y from the open interval ]0, 1], and its image g(t,) from [0, 1]2. Then

=1[0,1]\ {to} = [0, to| U]to, 1] is not an interval, so it is not connected (fill in the details).
On the other hand, the set B := [0,1]2\ {g(to)} is pathwise connected (give a detailed
proof), so by Proposition 4.37 it is connected. Remark that g~ '(B) = A. This contradicts
Theorem 3.15, which states that the image of a connected set under a continuous function
between metric spaces is connected. n



