Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

16.05.2006

5. Tutorial Analysis II for MCS Summer Term 2006

Let $f: [a,b] \to \mathbb{R}$ be a bounded function. For any partition $P = (a = x_0 < x_1 < \ldots < x_n = b)$ of [a,b] define

$$||P|| := \max\{x_i - x_{i-1} : 1 \le i \le n\},$$

$$\sigma(P, f, \xi) := \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}), \quad \text{where } \xi_i \in [x_{i-1}, x_i], \quad 1 \le i \le n.$$

The sums $\sigma(P, f, \xi)$ are called the *Riemann sums* associated with the function f, the partition P, and the system of intermediate points $\xi = (\xi_i)_{i=1}^n = (\xi_1, \xi_2, \dots, \xi_n)$.

(T5.1)

- (i) Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Prove that the following are equivalent.
 - (1) f is integrable.
 - (2) There is an $I \in \mathbb{R}$ such that for any $\varepsilon > 0$ there is $\delta > 0$ such that

$$\left| \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - I \right| < \varepsilon$$

for any partition $P = (a = x_0 < x_1 < \dots x_n = b)$ of [a, b] with $||P|| < \delta$ and for every choice of points ξ_1, \dots, ξ_n with $\xi_i \in [x_{i-1}, x_i]$ for $1 \le i \le n$.

In case such an $I \in \mathbb{R}$ as specified above exists, it is the integral of f. Riemann defined the integral of $f: [a,b] \to \mathbb{R}$ as outlined in this exercise, rather than the way it is done in Hofmann's book.

Hint: For $(1) \Rightarrow (2)$, argue that there exist step functions s, t with $s \leq f \leq t$ and $\int t - \int s < \varepsilon/2$ and associated partition $P' = (a = y_0 < y_1 < \ldots < y_m = b)$. Now consider a partition $P = (a = x_0 < x_1 < \ldots < x_n = b)$ and let $\xi = (\xi)_{i=1}^n$ be a choice of points with $\xi_i \in [x_{i-1}, x_i]$ for $1 \leq i \leq n$. Consider the union Π of those intervals $]x_{i-1}, x_i[$ such that there exists a $1 \leq j \leq m$ with $[x_{i-1}, x_i] \subseteq]y_{j-1}, y_j[$. Notice that there can be at most 2m intervals $]x_{i-1}, x_i[$ such that $]x_{i-1}, x_i[\not\subseteq \Pi$.

(ii) Let $f:[a,b] \to \mathbb{R}$ be integrable. Prove that for every sequence $(P_n)_{n \in \mathbb{N}}$ of partitions $P_n = (a = x_0^{(n)} < x_1^{(n)} < \ldots < x_{p_n}^{(n)} = b)$ with $\lim_{n \to \infty} ||P_n|| = 0$, and for all systems $\xi^{(n)} = (\xi_i^{(n)})_{i=1}^{p_n}$ of intermediate points with $\xi_i^{(n)} \in [x_{i-1}^{(n)}, x_i^{(n)}]$ $(n \in \mathbb{N}, 1 \le i \le p_n)$,

$$\lim_{n\to\infty} \sigma(P_n, f, \xi^{(n)}) = \int_a^b f dx.$$

Solution.

(i) (1) \Rightarrow (2) : Let $\varepsilon > 0$. Since f is integrable there exist step functions $s,\ t$ with $s \le f \le t$ and

$$\int t - \int s < \frac{\varepsilon}{2}.$$

Since f is bounded we can define

$$M := \sup\{|f(x)| : x \in [a,b]\}.$$

Let $P' = (a = y_0 < y_1 < \ldots < y_m = b)$ be a partition associated with s and t. Let now

$$\delta = \frac{\varepsilon}{8Mm}.$$

Let $P = (a = x_0 < x_1 < \ldots < x_n = b)$ be a partition such that $||P|| < \delta$, and let $\xi = (\xi)_{i=1}^n$ be a choice of points with $\xi_i \in [x_{i-1}, x_i]$ for $1 \le i \le n$. We define the step function $F \in S[a,b]$ by F(a) := 0 and by for each $1 \le i \le n$ letting $F(x_i) := 0$ and $F(x) := f(\xi_i)$ for $x_{i-1} < x < x_i$. Then

$$\int F = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

We have

$$s(x) - 2M \le F(x) \le t(x) + 2M$$

for all $x \in [a, b]$. Furthermore, if $[x_{i-1}, x_i] \subseteq]y_{j-1}, y_j[$ for some $1 \le j \le m$, then we have

$$s(x) \le F(x) \le t(x)$$

for all $x \in]x_{i-1}, x_i[$. Let $\Pi \subseteq [a,b]$ be the union of those intervals $]x_{i-1}, x_i[$ such that there exists a $1 \leq j \leq m$ with $[x_{i-1}, x_i] \subseteq]y_{j-1}, y_j[$. Notice that there can be at most 2m intervals $]x_{i-1}, x_i[$ such that $]x_{i-1}, x_i[\not\subseteq \Pi]$. We define the step function $\phi: [a,b] \to \mathbb{R}$ by $\phi(x):=0$ if $x \in \Pi$ and $\phi(x):=2M$ if $x \notin \Pi$. Then by the above we have

$$s(x) - \phi(x) \le F(x) \le t(x) + \phi(x)$$

for all $x \in [a, b]$. Since there are at most 2m intervals $]x_{i-1}, x_i[$ on which ϕ is not constant 0, we get

$$\int \phi \le 2M(2m\delta) = \varepsilon/2.$$

So

$$\int s - \varepsilon/2 \le \int F \le \int t + \varepsilon/2.$$

By our choice of s, t we have

$$\int f < \int s + \varepsilon/2$$

and

$$\int t < \int f + \varepsilon/2.$$

Thus

$$\left| \int f - \int F \right| < \varepsilon,$$

as we wanted to show.

 $(2) \Rightarrow (1)$: Let $\varepsilon > 0$, and let δ be such that

$$\left| \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - I \right| < \varepsilon/4$$

for any partition $P=(a=x_0< x_1< \ldots x_n=b)$ of [a,b] with $\|P\|<\delta$ and for every choice of points ξ_1,\ldots,ξ_n with $\xi_i\in [x_{i-1},x_i]$ for $1\leq i\leq n$. Let now $P=(a=x_0< x_1< \ldots x_n=b)$ be a partition with $\|P\|<\delta$ and $(b-a)/n<\varepsilon/4$. For any $1\leq i\leq n$ we let

$$m_i := \inf\{f(x) : x_{i-1} \le x \le x_i\}, \quad M_i := \sup\{f(x) : x_{i-1} \le x \le x_i\}$$

Define now $s_1, t_1 : [a, b] \to \mathbb{R}$ by:

$$s_1(x) = m_i$$
, $t_1(x) = M_i$ for all $x \in [x_{i-1}, x_i]$, $1 \le i \le n$, $s_1(b) = t_1(b) = f(b)$.

Then s_1, t_1 are step functions, $s_1 \leq f \leq t_1$, and

$$\int t_1 - \int s_1 = \sum_{i=1}^n M_i(x_i - x_{i-1}) - \sum_{i=1}^n m_i(x_i - x_{i-1}).$$

Pick now ξ_1, \ldots, ξ_n such that $\xi_i \in [x_{i-1}, x_i]$ for $1 \le i \le n$ and such that

$$M_i - f(\xi_i) < 1/n.$$

Then

$$\int t_1 = \sum_{i=1}^n M_i(x_i - x_{i-1}) < \sum_{i=1}^n (f(\xi_i) + 1/n)(x_i - x_{i-1}) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) + \frac{b-a}{n}.$$

So

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) \le \int t_1 < \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) + \frac{b - a}{n},$$

and furthermore

$$\left| \int t_1 - I \right| < \varepsilon/2,$$

since $(b-a)/n < \varepsilon/4$.

Let now ξ'_1, \ldots, ξ'_n be such that $\xi'_i \in [x_{i-1}, x_i]$ for $1 \le i \le n$ and such that

$$f(\xi_i') - m_i < 1/n$$
.

Then

$$\int s_1 = \sum_{i=1}^n m_i(x_i - x_{i-1}) > \sum_{i=1}^n (f(\xi_i') - 1/n)(x_i - x_{i-1}) = \sum_{i=1}^n f(\xi_i')(x_i - x_{i-1}) - \frac{b-a}{n}.$$

So

$$\sum_{i=1}^{n} f(\xi_i')(x_i - x_{i-1}) \ge \int s_1 > \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - \frac{b - a}{n},$$

and furthermore

$$\left| \int s_1 - I \right| < \varepsilon/2,$$

since $(b-a)/n < \varepsilon/4$.

Hence

$$\int t_1 - \int s_1 < \varepsilon,$$

and we can apply the Riemann Criterion (Theorem 5.12) to conclude that f is integrable.

(ii) This follows easily from (i). Let $(P_n)_{n\in\mathbb{N}}$ be a sequence of partitions $P_n=(a=x_0^{(n)}< x_1^{(n)}<\ldots< x_{p_n}^{(n)}=b)$ with $\lim_{n\to\infty}\|P_n\|=0$, and let $\xi^{(n)}=(\xi_i^{(n)})_{i=1}^{p_n}$ be systems of intermediate points with $\xi_i^{(n)}\in[x_{i-1}^{(n)},x_i^{(n)}]$ $(n\in\mathbb{N},\ 1\leq i\leq p_n)$. Let $\varepsilon>0$, and let δ be as in (i). Since $\lim_{n\to\infty}\|P_n\|=0$, there is N>0 such that $\|P_n\|<\delta$ for any $n\geq N$. Applying (i), it follows that for any $n\geq N$,

$$\left| \sigma(P_n, f, \xi^{(n)}) - \int_a^b f \right| = \left| \sum_{i=1}^{p_n} f(\xi_i^{(n)}) (x_i^{(n)} - x_{i-1}^{(n)}) - \int_a^b f \right| < \varepsilon.$$

Hence,

$$\lim_{n\to\infty} \sigma(P_n, f, \xi^{(n)}) = \int_a^b f dx.$$

(T5.2) Let $a < b \in \mathbb{R}$, and let $\exp : [a, b] \to \mathbb{R}$ be the exponential function. Use (T5.1)(ii) to compute its integral.

Solution. Since exp is monotone it is integrable. We apply (T5.1)(ii) to compute the integral. For every $n \in \mathbb{N}$, we define the partition $P_n = (a = x_0^{(n)} < x_1^{(n)} < \ldots < x_n^{(n)} = b)$, where $x_i^{(n)} = a + i \cdot \frac{b-a}{n}$ for all $0 \le i \le n$. Then $(P_n)_{n \in \mathbb{N}}$ is a sequence of partitions of [a,b] satisfying

$$\lim_{n \to \infty} ||P_n|| = \lim_{n \to \infty} \frac{b-a}{n} = 0.$$

Consider now the systems $\xi^{(n)} = (\xi_i^{(n)})_{i=1}^n$ of intermediate points with $\xi_i^{(n)} = x_{i-1}^{(n)}$ for $1 \le i \le n$. Then

$$\sigma(P_n, f, \xi^{(n)}) = \sum_{i=1}^n f(\xi_i^{(n)})(x_i^{(n)} - x_{i-1}^{(n)}) = \sum_{i=1}^n f\left(a + (i-1) \cdot \frac{b-a}{n}\right) \cdot \frac{b-a}{n}$$

$$= \frac{b-a}{n} \sum_{i=1}^n \exp\left(a + (i-1) \cdot \frac{b-a}{n}\right)$$

$$= \frac{b-a}{n} \exp(a) \sum_{i=1}^n \left[\exp\left(\frac{b-a}{n}\right)\right]^{i-1}$$

$$= \frac{b-a}{n} \exp(a) \frac{\left[\exp\left(\frac{b-a}{n}\right)\right]^n - 1}{\exp\left(\frac{b-a}{n}\right) - 1}.$$

$$= \exp(a)(\exp(b-a) - 1) \frac{\frac{b-a}{n}}{\exp\left(\frac{b-a}{n}\right) - 1}$$

$$= (\exp(b) - \exp(a)) \frac{\frac{b-a}{n}}{\exp\left(\frac{b-a}{n}\right) - 1}.$$

It follows that

$$\lim_{n \to \infty} \sigma(P_n, f, \xi^{(n)}) = (\exp(b) - \exp(a)) \lim_{n \to \infty} \frac{\frac{b-a}{n}}{\exp\left(\frac{b-a}{n}\right) - 1} = (\exp(b) - \exp(a)) \cdot 1$$
$$= \exp(b) - \exp(a),$$

since $\lim_{\substack{x\to 0\\x\neq 0}}\frac{x}{\exp(x)-1}=0$ by the Rule of Bernoulli and de l'Hôpital.

Using now (T5.1)(ii), we get that

$$\int_a^b f dx = \lim_{n \to \infty} \sigma(P_n, f, \xi^{(n)}) = \exp(b) - \exp(a).$$

5