Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

13.07.2006

13. Home work Analysis II for MCS Summer Term 2006

(H13.1)

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x,y) = (e^x \cos y, e^x \sin y).$$

- (i) Show that f is differentiable and compute its derivative.
- (ii) Show that f is locally invertible around every point in \mathbb{R}^2 .
- (iii) Show that f does not have a global inverse.

Solution. Handwritten.

(H13.2)

Let us consider the following system of equations:

$$x^2 + 4y^2 + 9z^2 = 1$$
$$x + y + z = 0.$$

(i) Show that this system can be solved uniquely with respect to u and z.

$$\left(\begin{array}{c} y\\z\end{array}\right)=g(x),$$

in a neighborhood of the point $(0, 1/\sqrt{13}, -1/\sqrt{13})$.

(ii) Compute g'(0).

Solution.

1

(i) Let

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \ f(x, y, z) = \left(\begin{array}{c} x^2 + 4y^2 + 9z^2 - 1\\ x + y + z \end{array}\right).$$

We have to prove that the equation f(x, y, z) = 0 can be solved uniquely with respect to y and z for (x, y, z) near $(0, 1/\sqrt{13}, -1/\sqrt{13})$. We apply the Implicit Function Theorem. First, let us remark that $f(0, 1/\sqrt{13}, -1/\sqrt{13}) = 0$. Furthermore

$$J_f(x,y,z) = \begin{pmatrix} \frac{\partial f_1}{\partial x}(x,y,z) & \frac{\partial f_1}{\partial y}(x,y,z) & \frac{\partial f_1}{\partial z}(x,y,z) \\ \frac{\partial f_2}{\partial x}(x,y,z) & \frac{\partial f_2}{\partial y}(x,y,z) & \frac{\partial f_2}{\partial z}(x,y,z) \end{pmatrix} = \begin{pmatrix} 2x & 8y & 18z \\ 1 & 1 & 1 \end{pmatrix}.$$

Since all the partial derivatives are continuous on \mathbb{R}^3 it follows by Proposition 9.41 that f is continuously differentiable on \mathbb{R}^3 .

We must test whether the matrix

$$\begin{pmatrix} \frac{\partial f_1}{\partial y}(x, y, z) & \frac{\partial f_1}{\partial z}(x, y, z) \\ \frac{\partial f_2}{\partial y}(x, y, z) & \frac{\partial f_2}{\partial z}(x, y, z) \end{pmatrix} = \begin{pmatrix} 8y & 18z \\ 1 & 1 \end{pmatrix}$$

is invertible at $(0, 1/\sqrt{13}, -1/\sqrt{13})$. At this point, the determinant of the matrix is

$$\begin{vmatrix} 8\frac{1}{\sqrt{13}} & -18\frac{1}{\sqrt{13}} \\ 1 & 1 \end{vmatrix} = \frac{26}{\sqrt{13}} \neq 0,$$

hence the matrix is invertible.

Consequently, there exist open neighborhoods $U=]-\delta$, $\delta[$ of 0 in \mathbb{R} , respectively V of $(1/\sqrt{13},-1/\sqrt{13})$ in \mathbb{R}^2 , and a continuously differentiable function $g:U\to V,g=\begin{pmatrix}g_1\\g_2\end{pmatrix}$ such that $g(0)=\begin{pmatrix}1/\sqrt{13}\\-1/\sqrt{13}\end{pmatrix}$, $f(x,g_1(x),g_2(x))=0$ for all $x\in]-\delta$, $\delta[$, and moreover g(x) is the unique solution of the equation f(x,y,z)=0 with $x\in]-\delta$, $\delta[$, $(y,z)\in V$.

(ii) We have $f_i(x, g_1(x), g_2(x)) = 0$, i = 1, 2, for $x \in]-\delta, \delta[$. We define $h:]-\delta, \delta[\to \mathbb{R}$ by $h(x) := f_1(x, g_1(x), g_2(x)) = x^2 + 4(g_1(x))^2 + 9(g_2(x))^2 - 1$. Then h is differentiable, with $h'(x) = 2x + 8g_1(x)g'_1(x) + 18g_2(x)g'_2(x) = 0$. Likewise we conclude from $g_1(x) + g_2(x) = -x$ that $g'_1(x) + g'_2(x) = -1$ for $x \in]-\delta, \delta[$. Thus for $x \in]-\delta, \delta[$ we have

$$2x + 8g_1(x)g_1'(x) + 18g_2(x)g_2'(x) = 0,$$

$$1 + g_1'(x) + g_2'(x) = 0.$$

Inserting $g_1'(x) = -1 - g_2'(x)$ into the first equation gives $2x - 8g_1(x) - 8g_1(x)g_2'(x) + 18g_2(x)g_2'(x) = 0$, and hence

$$g_2'(x) = \frac{4g_1(x) - x}{9g_2(x) - 4g_1(x)}, \quad g_1'(x) = \frac{-9g_2(x) + x}{9g_2(x) - 4g_1(x)}.$$

In particular, $g'_1(0) = -9/13$, $g'_2(0) = -4/13$. Thus,

$$g'(0) = \begin{pmatrix} -9/13 \\ -4/13 \end{pmatrix}.$$

(H13.3)

Let $a \in \mathbb{R}$, and define $h_1, h_2 : \mathbb{R}^2 \to \mathbb{R}$ by

$$h_1(x,y) = x \cos a - y \sin a$$

and

$$h_2(x,y) = x \sin a + y \cos a$$
.

We will write $u = h_1(x, y)$ and $v = h_2(x, y)$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function from \mathbb{R}^2 into \mathbb{R} , and let $g : \mathbb{R}^2 \to \mathbb{R}$ be defined by $g(x, y) = f(h_1(x, y), h_2(x, y))$. Prove that

$$(\frac{\partial g}{\partial x}(x,y))^2 + (\frac{\partial g}{\partial y}(x,y))^2 = (\frac{\partial f}{\partial u}(u,v))^2 + (\frac{\partial f}{\partial v}(u,v))^2.$$

Solution. Handwritten.