Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

11.05.2006

4. Home work Analysis II for MCS Summer Term 2006

(H4.1)

Determine the local maxima and minima of the following function:

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(x) := \frac{x}{1 + x^2}.$$

Solution. We have that

$$f'(x) = \frac{1+x^2-x\cdot 2x}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2},$$

$$f''(x) = \frac{-2x(1+x^2)^2 - (1-x^2)\cdot 2(1+x^2)\cdot 2x}{(1+x^2)^4} = \frac{-2x(1+x^2) - 4x(1-x^2)}{(1+x^2)^3}$$

$$= \frac{2x^3 - 6x}{(1+x^2)^3}.$$

Hence the zeros of f' are $x = \pm 1$, since

$$f'(x) = \frac{1 - x^2}{(1 + x^2)^2} = 0 \quad \Leftrightarrow \quad 1 - x^2 = 0.$$

Because of

$$f''(-1) = \frac{-2+6}{8} > 0$$
, and $f''(1) = \frac{2-6}{8} < 0$,

f has a local minimum at x = -1 and a local maximum at x = 1. Because f is everywhere differentiable there are no other local extrema.

(H4.2)

Prove the following version of the rule of Bernoulli and de l'Hôpital:

Let $a \in \mathbb{R}$ and let $f: [a, \infty[\to \mathbb{R} \text{ and } g:]a, \infty[\to \mathbb{R} \text{ be functions. Assume that:}]$

- (1) There is a $M \in \mathbb{R}$ such that f and g are differentiable on $M, \infty[$, and such that $g(x) \neq 0$ and $g(x) \neq 0$ for x > M.
- (2) The limit $l = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ exists.

(3) $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} g(x) = 0$.

Then the limit

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$

exists and coincides with l.

(This exercise has with hind sight been modified to make life easier for you. The same holds true for (T4.2).)

Solution. Handwritten.