Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

20.07.2006

14. Exercise sheet Analysis II for MCS Summer Term 2006

(G14.1)

- (i) Show that the equation $x^3 + y^2 2xy = 0$ may be solved uniquely for (x, y) near (1,1) with respect to x and that the obtained function $x = \varphi(y)$ is continuously differentiable near y = 1. Calculate $\varphi'(1)$.
- (ii) Show that φ is two times continuously differentiable near y=1 and calculate $\varphi''(1)$.
- (iii) Is the equation uniquely solvable with respect to y near (1,1)?

Solution.

(i) Let

$$F: \mathbb{R}^2 \to \mathbb{R}, \quad F(x,y) = x^3 + y^2 - 2xy.$$

Then F is continuously differentiable with

$$\frac{\partial F}{\partial x}(x,y) = 3x^2 - 2y, \quad \frac{\partial F}{\partial y}(x,y) = 2y - 2x.$$

Since F(1,1)=0, and $\frac{\partial F}{\partial x}(1,1)=1\neq 0$, we can solve the equation F(x,y)=0 for (x,y) near (a,b)=(1,1) with respect to x using the Implicit Function Theorem. More precisely: there exists open neighborhoods U of b=1, respectively V of a=1 in \mathbb{R} , and a function $\varphi:U\to V$ such that $\varphi(1)=1$, $F(\varphi(y),y)=F(a,b)=0$ for all $y\in U$, and $\varphi(y)$ is the unique solution of the equation F(x,y)=0 with $x\in V,y\in U$. Calculation of $\varphi'(1)$:

By the Implicit Function Theorem, we have that φ is continuously differentiable on U, and for all $y \in U$

$$\varphi'(y) = -\frac{\frac{\partial F}{\partial y}(\varphi(y), y)}{\frac{\partial F}{\partial x}(\varphi(y), y)} = \frac{2y - 2\varphi(y)}{3\varphi(y)^2 - 2y} \tag{1}$$

In particular, $\varphi'(1) = -\frac{2-2}{3-2} = 0$.

(ii) Since φ is continuously differentiable on U, by (1) we get that φ' is also continuously differentiable on U. Thus, φ is two times continuously differentiable, and

$$\varphi''(y) = -\frac{2 - 2\varphi'(y)}{3\varphi(y)^2 - 2y} + \frac{2y - 2\varphi(y)}{(3\varphi(y)^2 - 2y)^2} (6\varphi(y)\varphi'(y) - 2).$$

In particular $\varphi''(1) = -2$.

(iii) As $\frac{\partial F}{\partial y}(1,1) = 0$, the Implicit Function Theorem does not help to answer the question about the solvability of F(x,y) = 0 with respect to y for (x,y) near (1,1). However $F(x,y) = x^3 + y^2 - 2xy = 0$ is equivalent to

$$(y-x)^2 = x^2(1-x). (2)$$

Since the left hand side of (2) is never negative but the right hand side is negative for x > 1, we cannot solve F(x,y) = 0 for x > 1 with respect to y and there is no y with F(x,y) = 0. For x = 1 we obtain $(y - x)^2 = 0$, hence y = x = 1. For x < 1 we can explicitly solve the equation with respect to y and obtain two different solutions,

$$y_{1/2}(x) = x \pm x\sqrt{1-x}$$
.

(G14.2)

Prove that the map $F: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$F(x,y) = \left(\begin{array}{c} x^2 - y^2 \\ 2xy \end{array}\right)$$

is locally invertible for $(x, y) \neq (0, 0)$. Is F also globally invertible? Compute the preimage $F^{-1}(\{(a, b)\})$ of an arbitrary point $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$.

Solution.

Obviously F is continuously differentiable. To use the Inverse Function Theorem we have to prove that F'(x,y) is invertible for all $(x,y) \neq 0$. Since

$$F'(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix} \quad \text{hence} \quad \det(F'(x,y)) = 4(x^2 + y^2),$$

we get that F'(x,y) is invertible for all $(x,y) \neq 0$.

The function F is not globally invertible because it is not injective: We have F(x,y) = F(-x,-y).

Now we compute the preimage of an arbitrary point $(a,b) \in \mathbb{R}^2 \setminus \{0\}$: Let $(a,b) \in \mathbb{R}^2 \setminus \{0\}$. We search all $(x,y) \in \mathbb{R}^2$ with F(x,y) = (a,b). We have

$$F(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \implies 2xy = b.$$

We distinguish two cases:

(i) $b \neq 0$: Then $y \neq 0$, hence $x = \frac{b}{2a}$. If we put this in the equation $x^2 - y^2 = a$ we get

$$\begin{split} \frac{b^2}{4y^2} - y^2 &= a & \stackrel{y \neq 0}{\Longrightarrow} \quad y^4 + ay^2 - \frac{b^2}{4} = 0 \\ & \Longrightarrow \quad y^2 = -\frac{a}{2} \pm \sqrt{\frac{a^2 + b^2}{4}} \\ & \stackrel{y^2 > 0}{\Longrightarrow} \quad y^2 = -\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}} \\ & \Longrightarrow \quad y = \pm \sqrt{-\frac{a}{2} + \frac{\sqrt{a^2 + b^2}}{2}}, \\ & x = \pm \frac{b}{2\sqrt{-\frac{a}{2} + \frac{\sqrt{a^2 + b^2}}{2}}}. \end{split}$$

(ii) b=0: Then we have x=0 or y=0 (and $a\neq 0$). If a>0, we have y=0 and $x=\pm\sqrt{a}$. If a<0, we have x=0 and $y=\pm\sqrt{a}$.

(G14.3) (Supplementary)

Find the global maximum and minimum of the function

$$f(x,y) = 2x^2 + xy + \frac{5}{4}y^2 - 2x - 2y$$

on the unit square $S = [0, 1] \times [0, 1]$.

Hint: To compute the global extrema of a function f defined on a compact subset K of \mathbb{R}^n , you have to compute the local extrema on the interior of K and the global extrema on the boundary of K.

Solution. Interior $\overset{\circ}{S} = (0,1) \times (0,1)$:

The gradient is $\operatorname{grad} f = (4x + y - 2, x + \frac{5}{2}y - 2)$. It is 0 at $x = \frac{1}{3}, y = \frac{2}{3}$. The point $\left(\frac{1}{3}, \frac{2}{3}\right)$ is inside the domain, so this is a candidate for global minimum or maximum. The value of the function is $f\left(\frac{1}{3}, \frac{2}{3}\right) = -1$.

Boundary: It is made of four line segments:

(i) $y = 0, 0 \le x \le 1$: $f(x,0) = 2x^2 - 2x$, critical point: $x = \frac{1}{2}$, possible candidates for minimum, maximum: $f(0,0) = 0, f\left(\frac{1}{2},0\right) = -\frac{1}{2}, f(1,0) = 0$.

(ii) $y = 1, 0 \le x \le 1$: $f(x, 1) = 2x^2 - x - \frac{3}{4}$, critical point: $x = \frac{1}{4}$, possible candidates for minimum, maximum: $f(0, 1) = -\frac{3}{4}$, $f\left(\frac{1}{4}, 1\right) = -\frac{7}{8}$, $f(1, 1) = \frac{1}{4}$.

(iii) $x = 0, 0 \le y \le 1$: $f(0, y) = \frac{5}{4}y^2 - 2y$, critical point: $y = \frac{4}{5}$, possible candidates for minimum, maximum: f(0, 0) = 0, $f\left(0, \frac{4}{5}\right) = -\frac{4}{5}$, $f(0, 1) = -\frac{3}{4}$.

(iv) $x = 1, 0 \le y \le 1$: $f(1, y) = \frac{5}{4}y^2 - y$, critical point: $y = \frac{2}{5}$, possible candidates for minimum or maximum: $f(1, 0) = 0, f\left(1, \frac{2}{5}\right) = -\frac{1}{5}, f(1, 1) = \frac{1}{4}$.

So the global maximum is $f(1,1) = \frac{1}{4}$, the global minimum is $f\left(\frac{1}{3},\frac{2}{3}\right) = -1$.

(G14.4) (Supplementary)

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ a continiously differentiable function and f'(x) invertible for all $x \in \mathbb{R}^n$. Prove that f is open, i. e. f(U) is open for each open set $U \subseteq \mathbb{R}^n$.

Solution. Let $y \in f(U)$ and $x \in U$ with f(x) = y. Since f'(x) is invertible the Inverse Function Theorem yields neighbourhouds V of x and W of f(x) = y such that $f|_V : V \to W$ has a continuously differentiable inverse function $g: W \to V$. So $f(V \cap U) = g^{-1}(V \cap U)$ is open because g is continuous. Hence, since $y \in f(V \cap U)$ there is a neighbourhood U_y of y with $U_y \subseteq f(V \cap U) \subseteq f(U)$. This holds for all $y \in f(U)$, so f(U) is open.