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(G14.1)

(i) Show that the equation z® + 42 — 2zy = 0 may be solved uniquely for (z,y) near
(1,1) with respect to z and that the obtained function z = ¢(y) is continuously
differentiable near y = 1. Calculate ¢'(1).

(i) Show that ¢ is two times continuously differentiable near y = 1 and calculate ¢"(1).

(iii) Is the equation uniquely solvable with respect to y near (1,1)?
Solution.

(i) Let
F:R SR Fz,y)=2*+v° 22y
Then F' is continuously differentiable with
OF oF
Gr @Y =30~ 2, F(ay) =2y 2w
. or .

Since F(1,1) = 0, and —(1,1) = 1 # 0, we can solve the equation F'(z,y) = 0
for (z,y) near (a,b) = (1,1) with respect to z using the Implicit Function Theorem.
More precisely: there exists open neighborhoods U of b = 1, respectively V of a =1
in R, and a function ¢ : U — V such that ¢(1) =1, F(¢(y),y) = F(a,b) = 0 for all
y € U, and ¢(y) is the unique solution of the equation F'(z,y) =0 withz € V,y € U.
Calculation of ¢'(1):

By the Implicit Function Theorem, we have that ¢ is continuously differentiable on
U, and for ally € U

) _73_9(90(11)111) 2y —20(y)
ol = T(o(y)y)  3e(y)?—2y @

In particular, ¢'(1) = —2=2 = 0.
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(ii) Since ¢ is continuously differentiable on U, by (1) we get that ¢’ is also continuously
differentiable on U. Thus, ¢ is two times continuously differentiable, and

C2-2¢(y) 2y — 2¢(y)
3p(y)? =2y (Be(y)*—2y
In particular ¢"(1) = —2.

oF
5 (1,1) = 0, the Implicit Function Theorem does not help to answer the question
Y

©"(y) = 2 (6o(y)¢'(y) — 2).

(iii) As
about the solvability of F(z,y) = 0 with respect to y for (z,y) near (1,1). However
F(z,y) = 23 4+ 9% — 22y = 0 is equivalent to

(y—2)? = 2%(1 — z). (2)

Since the left hand side of (2) is never negative but the right hand side is negative
for z > 1, we cannot solve F'(z,y) = 0 for z > 1 with respect to y and there is no y
with F'(z,y) = 0. For z = 1 we obtain (y — z)?> = 0, hence y =z = 1. For z < 1 we
can explicitly solve the equation with respect to y and obtain two different solutions,

y1/z(z) =zxxazvl—z.

(G14.2)

Prove that the map F': R? — R? with

Fa = (")

2xy

is locally invertible for (z,y) # (0,0). Is F" also globally invertible? Compute the preimage
F'({(a,b)}) of an arbitrary point (a,b) € R? \ {(0,0)}.

Solution.

Obviously F' is continously differentiable. To use the Inverse Function Theorem we have
to prove that F'(z,y) is invertible for all (z,y) # 0. Since

Fl(z,y) = ( g; _Qiy ) hence det(#'(z,y)) = 4(z2 .}.y?)7

we get that F'(z,y) is invertible for all (z,y) # 0.

The function F' is not globally invertible because it is not injective: We have F(z,y) =

Now we compute the preimage of an arbitrary point (a, b) € R? \ {0}: Let (a,b) € R?\ {0}.
We search all (z,y) € R? with F(z,y) = (a,b). We have

2 .2
F(ﬂ”,y):(xQIyy >:<Z> = 22y =0h.

We distinguish two cases:



i) b# 0: Then y # 0, hence z = L. If we put this in the equation z* — y? = a we get
2y

b 2 7Q 4 2 P
4—y27y =0 & y+any:0
a a? + b?
= =4
L 4
y3>0 o a a? + b?
> _ ——
S T
a a2+
= y=/-——4+—
2 2
==+

(ii) b = 0: Then we have z = 0 or y = 0 (and a # 0). If a > 0, we have y = 0 and
z =*v/a. If a <0, we have z =0 and y = +\/a.

(G14.3) (Supplementary)

Find the global maximum and minimum of the function
2 5 o
fly)=2a"+ay+ 7y 20 =2

on the unit square S = [0, 1] x [0, 1].

Hint: To compute the global extrema of a function f defined on a compact subset K of
R", you have to compute the local extrema on the interior of K and the global extrema on
the boundary of K.

Solution. Interior § = (0,1) x (0,1):

5 1 2 12
The gradient is gradf = (4$+y—2,z+§y—2). ItisOat z = Y= 73 The point (5, §>

is inside the domain, so this is a candidate for global minimum or maximum. The value of

12
the function i -, -] =-1
e function 1sf<3,3

Boundary: It is made of four line segments:

1
(i) y=0,0<z <1: f(x,0) = 22® — 2, critical point: z = 2 possible candidates for

minimum, maximum: f(0,0) =0, f (%,0) = —%, f(1,0)=0.

3 1
(i) y=1,0<z<1: f(z,1) =22 —x — —, critical point: z = 7 possible candidates

1 1
for minimum, maximum: f(0,1) = —Z, f (Z’ 1) = 7; f(1,1)= Y
5 o . 4 . .
(i) 2=0,0<y <1: f(0,y) = yiae 2y, critical point: y = & possible candidates for
4 4
minimum, maximum: f(0,0) =0, f (0, g) = fg,f((), 1) = f%
. 5, . . 2 . .
(ivfz=10<y<1:f(l,y = Y critical point: y = 5 possible candidates for
minimum or maximum: f(1,0) =0, f (1, %) = 7%,f(1, 1) = i
. . 1 L. . 12
So the global maximum is f(1,1) = 7 the global minimum is f <§, 3> =—1. u

(G14.4) (Supplementary)

Let f: R* — R" a continiously differentiable function and f’(z) invertible for all z € R".
Prove that f is open, i. e. f(U) is open for each open set U C R™.

Solution. Let y € f(U) and « € U with f(z) = y. Since f’(z) is invertible the Inverse
Function Theorem yields neighbourhouds V of z and W of f(z) = y such that f|y, : V — W
has a continuously differentiable inverse function g : W —V . So f(V NU) =g (V NU)
is open because g is continuous. Hence, since y € f(V NU) there is a neighbourhood U, of
y with Uy C f(V NU) C f(U). This holds for all y € f(U), so f(U) is open. [}



