Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

06.07.2006

12. Exercise sheet Analysis II for MCS Summer Term 2006

(G12.1)

Let V and W be Banach spaces. We say that a function $A:V\to W$ is affine if there exist $c\in W$ and linear $T:V\to W$ such that

$$A(x) = T(x) + c$$

for all $x \in V$. Prove that any continuous affine function $A: V \to W$ is differentiable. Show also that if A(x) = T(x) + c for $x \in V$, then A'(x) = T for any $x \in V$.

Solution. Handwritten.

(G12.2)

Let

$$U = \{(r, \phi) : r > 0, \ 0 < \phi < 2\pi\} \subseteq \mathbb{R}^2,$$

and let

$$f = \left(\begin{array}{c} f_1 \\ f_2 \end{array}\right) : U \to \mathbb{R}^2$$

be defined by

$$f_1(r,\phi) = r\cos\phi,$$

$$f_2(r,\phi) = r\sin\phi.$$

We write $x = f_1(r, \phi)$ and $y = f_2(r, \phi)$.

(i) Notice that f is injective with range

$$f(U) = \mathbb{R}^2 \setminus \{(x,0) : x \ge 0\}.$$

Show that f has a continuous inverse $f^{-1}: f(U) \to \mathbb{R}^2$.

(ii) Prove that f is differentiable, and compute the Jacobi matrix of f.

(iii) Prove that f^{-1} is differentiable, and compute the Jacobi matrix of f^{-1} .

Solution. Handwritten.

(G12.3)

Let the function $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} x^2 y \sin(\frac{y}{x}) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

(i) Compute the partial derivatives of f where they exist and show that $\partial_1 f$ is not continuous in any point (0,y) with $y \neq 0$.

Hint for the latter: For $y \neq 0$, consider the points $(x_n, y_n) = (y/(n\pi), y)$ for $n \in \mathbb{N}$.

(ii) Decide whether f is differentiable in (0, y), for $y \in \mathbb{R}$.

Solution.

(i) For $x \neq 0$ we have

$$\partial_1 f(x,y) = 2xy \sin(\frac{y}{x}) - y^2 \cos(\frac{y}{x})$$

and

$$\partial_2 f(x,y) = x^2 \sin(\frac{y}{x}) + xy \cos(\frac{y}{x}).$$

For x = 0 we get

$$\partial_1 f(0, y) = \lim_{h \to 0} \frac{f(h, y) - f(0, y)}{h} = \lim_{h \to 0} \frac{h^2 y \sin(\frac{y}{h})}{h} = 0$$

and

$$\partial_2 f(0,y) = \lim_{h \to 0} \frac{f(0,y+h) - f(0,y)}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

For $n \in \mathbb{N}$ we set $(x_n, y_n) = (y/(n\pi), y)$. Then we have $\lim_{n \to \infty} (x_n, y_n) = (0, y)$ and

$$\partial_1 f(x_n, y_n) = 2 \frac{y^2}{n\pi} \sin(n\pi) - y^2 \cos(n\pi).$$

Thus $\lim_{n\to\infty} \partial_1 f(x_n, y_n)$ does not exist, and therefore $\partial_1 f$ is not continuous in (0, y).

(ii) Let $y_0 \in \mathbb{R}$. From (i) we get that $J_f(0,y_0)$ is the zero 1×2 matrix. Thus the candidate for the derivative $Df(0,y_0)$ of f in $(0,y_0)$ is the constant zero function. So we must show that

$$\frac{f(x,y) - f(0,y_0)}{\sqrt{x^2 + (y - y_0)^2}}$$

tends to zero as $(x,y) \to (0,y_0)$.

We get

$$\frac{f(x,y) - f(0,y_0)}{\sqrt{x^2 + (y - y_0)^2}} = \frac{x^2 y \sin(\frac{y}{x})}{\sqrt{x^2 + (y - y_0)^2}}.$$

Since

$$\left| \frac{x^2 y \sin(\frac{y}{x})}{\sqrt{x^2 + (y - y_0)^2}} \right| \le \left| \frac{x^2 y}{\sqrt{x^2}} \right| \le |xy|,$$

we get that f is differentiable in $(0, y_0)$.