Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

29.06.2006

11. Exercise sheet Analysis II for MCS Summer Term 2006

(G11.1)

Compute the arc length of the following paths.

(i)
$$f: [0, 2\pi] \to \mathbb{R}^3$$
, $f(t) = (r \cos t, r \sin t, ct)$, where $r, c > 0$.

(ii)
$$g: [0, 2\pi] \to \mathbb{R}^2$$
, $g(t) = (t - \sin t, 1 - \cos t)$.

Solution.

(i) Since f is continuously differentiable, we use Theorem 8.21. We have $f'(t) = (-r \sin t, r \cos t, c)$ and $||f'(t)||_2^2 = r^2 + c^2$. Hence

$$L(f) = \int_{0}^{2\pi} \sqrt{r^2 + c^2} dt = 2\pi \sqrt{r^2 + c^2}.$$

(ii) Again we can use Theorem 8.21, since g is continuously differentiable. We have $g'(t) = (1 - \cos t, \sin t)$ and $||g'(t)||_2^2 = 2 - 2\cos t = 4\sin^2\frac{t}{2}$. Hence

$$L(g) = \int_0^{2\pi} \sqrt{4\sin^2\frac{t}{2}} dt = 2 \int_0^{2\pi} \sin\frac{t}{2} dt = 4[-\cos\frac{t}{2}]_0^{2\pi} = 8.$$

(G11.2)

Let (X,d) be a metric space, and let $a \leq b \in \mathbb{R}$ and $c \leq d \in \mathbb{R}$. Let $\gamma' : [c,d] \to X$ be a path obtained from a path $\gamma : [a,b] \to X$ by a change of parameter. Prove that $L(\gamma) = L(\gamma')$.

(This is Proposition 8.13 in the handouts.)

Solution. Handwritten.

(G11.3)

1

Let (X,d) be a metric space, and let $a \leq b \in \mathbb{R}$. Let $\gamma : [a,b] \to X$ be a path in X. Prove that for all $c \in [a,b]$ we have

$$L(\gamma) = L(\gamma|_{[a,c]}) + L(\gamma|_{[c,b]}).$$

(Recall that $\gamma|_{[a,c]}:[a,c]\to X$ is the restriction of γ to [a,c], i.e. $\gamma|_{[a,c]}(x)=\gamma(x)$ for $x\in[a,c]$.)

(This is Proposition 8.17 in the handouts.)

Solution. Handwritten.