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(G11.1)

Compute the arc length of the following paths.

(i) f:[0,27] = R®, f(t) = (r cost,rsint,ct), where r,¢ > 0.

(ii) g:[0,2n] = R?, g(t) = (t —sint,1 — cost).

Solution.

(i) Since f is continuously differentiable, we use Theorem 8.21. We have f'(t)
(—=rsint,rcost,c) and || f'(t)||2 = r? + ¢*. Hence

2m
L(f) :/ V12 4+ Adt = 2nvr?2 + 2.
0

(i) Again we can use Theorem 8.21, since g is continuously differentiable. We have ¢'(t) =
(1 — cost,sint) and ||g'(t)]|3 = 2 — 2 cost = 4sin” . Hence

27 t 21 t t
L(g) = / 4sin® Zdt = 2/ sin —dt = 4[— cos 2|27 = 8.
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(G11.2)

Let (X, d) be a metric space, and leta < b € Rand ¢ < d € R. Let 7' : [¢,d] — X be a path
obtained from a path v : [a,b] — X by a change of parameter. Prove that L(y) = L(v').

(This is Proposition 8.13 in the handouts.)

Solution. Handwritten.

(G11.3)

Let (X, d) be a metric space, and let a < b € R. Let 7 : [a,b] — X be a path in X. Prove
that for all ¢ € [a, b] we have

L() = L(V|ja.) + L(V]e1)-
(Recall that 7|ja,q : [a,c] — X is the restriction of v to [a,c], i.e. Y|a(®) = v(z) for
z € [a,cl.)
(This is Proposition 8.17 in the handouts.)

Solution. Handwritten.



