Fachbereich Mathematik Dr. L. Leuştean E. Briseid, S. Herrmann

26/31.05.2006

6. Exercise sheet Analysis II for MCS Summer Term 2006

(G6.1)

Prove that the characteristic function of the rational numbers in the unit interval, i.e. the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{otherwise,} \end{cases}$$

is not Riemann integrable.

Solution.

Since f is bounded, the upper and the lower integrals of f exist. We shall prove that they are not equal. Let S_f be the set of all step functions $s \in S[0,1]$ with $s \leq f$, and let S^f be the set of all step functions $t \in S[0,1]$ with f < t. Then

$$\int f = \sup \{ \int s \mid s \in S_f \}, \quad \overline{\int} f = \inf \{ \int t \mid t \in S^f \}.$$

First, we shall prove that $\int s \leq 0$ for any $s \in S_f$, and that $\int t \geq 1$ for any $t \in S^f$. Let $s \in S_f, t \in S^f$. Then there is a partition $P = (0 = x_0 < \dots < x_n = 1)$ such that s takes constant values s_i and t takes constant values t_i on each interval $]x_{i-1}, x_i[$, for $1 \leq i \leq n$. Each of these intervals contain both a rational number q_i and an irrational number r_i . Thus, we get

$$s_i = s(r_i) \le f(r_i) = 0, \quad t_i = t(q_i) \ge f(q_i) = 1,$$

 \mathbf{SO}

$$\int s = \sum_{i=1}^{n} s_i(x_i - x_{i-1}) \le 0, \quad \int t = \sum_{i=1}^{n} t_i(x_i - x_{i-1}) \ge 1.$$

Hence,

$$\underline{\int} f \le 0, \quad \overline{\int} f \ge 1.$$

Since the function $s^*:[0,1]\to\mathbb{R},\ s^*(x)=0$ is in S_f and $\int s=0$, it follows that $\underline{\int} f=0$. Similarly, the function $t^*:[0,1]\to\mathbb{R},\ t^*(x)=1$ is in S^f and $\int t=1$, hence $\overline{\int} f=1$.

Thus,
$$\underline{\int} f \neq \overline{\int} f$$
, so f is not Riemann integrable.

(G6.2)

- (i) Let $a, b \in \mathbb{R}$ with a < b, and let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $\int_a^b f(x) dx = 0$. Prove that there is $c \in [a, b]$ such that f(c) = 0.
- (ii) Let $a < b \in \mathbb{R}$ and let $f : [a,b] \to \mathbb{R}$ be an isotone function. Prove that

$$f(a) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le f(b).$$

Solution.

(i) Assume that $f(c) \neq 0$ for all $c \in [a,b]$. Since f is continuous, we get that f has constant sign on [a,b]. Assume that f>0. Then $m:=\min\{f(x)\mid x\in [a,b]\}>0$. Since $f(x)\geq m$ for all $x\in [a,b]$, it follows that

$$\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} m \, dx = m(b-a) > 0,$$

which contradicts the hypothesis.

Similarly, if f < 0, then $M := \max\{f(x) \mid x \in [a,b]\} < 0$, so

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx = M(b - a) < 0,$$

again a contradiction with the hypothesis.

(ii) Since f is isotone, we have that $f(a) \le f(x) \le f(b)$ for all $x \in [a,b]$. It follows that

$$(b-a)f(a) = \int_a^b f(a) \, dx \le \int_a^b f(x) \, dx \le \int_a^b f(b) \, dx = (b-a)f(b),$$

that is,

$$f(a) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le f(b).$$

(G6.3) (Supplementary exercise)

Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Prove that

$$\lim_{n\to\infty} \int_0^1 x^n f(x) \, dx = 0.$$

Solution.

Since f is continuous, we get that f is also bounded, so there is $M \ge 0$ such that $|f(x)| \le M$ for all $x \in [0, 1]$. It follows that

$$\left| \int_0^1 x^n f(x) \, dx \right| \le \int_0^1 |x^n f(x)| \, dx = \int_0^1 x^n |f(x)| \, dx \le \int_0^1 x^n \cdot M \, dx = M \cdot \int_0^1 x^n \, dx$$
$$= M \cdot \frac{x^{n+1}}{n+1} \Big|_0^1 = \frac{M}{n+1}.$$

Since
$$\lim_{n\to\infty}\frac{M}{n+1}=0$$
, we get that $\lim_{n\to\infty}\left|\int_0^1x^nf(x)\,dx\right|=0$, so $\lim_{n\to\infty}\int_0^1x^nf(x)\,dx=0$.

Orientation Colloquium

The Department of Mathematics' Research Groups present themselves.

Monday, 29.05.2006 – 16:15-17:15 – \$207/109

Prof. Dr. Burkhard Kümmerer

FG Algebra, Geometrie und Funktionalanalysis

"Im Dreiländereck Funktionalanalysis – Stochastik – Mathematische Physik"

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.