

Fachbereich Mathematik

MCS Analysis II

Please write your na-
me on each sheet and
number all pages. At
the end of the exami-
nation, put the sheets
with your solutions in
the folded examination
sheet.

Name:
First name:
MatrNr.:
Studies:
🗆 Studienleisteung (Schein)
Prüfungsleistung (Bachelor)

Important:

- Time for the examination: 120 Minutes. Total amount of points: 50 points.
- Admitted material: 2 handwritten A4 sheets with your signature.
- All steps in the solutions and partial results need sufficient explanation.
- Good luck!

Problem	1	2	3	4	5	Σ	Note
Maximal Points	10	10	10	10	10	50	
Given Points							

Problem 1: Extrema and Taylor series

Consider the function $f:[0,3] \rightarrow \mathbb{R}$, $f(x) = 2x^3 - 9x^2 + 12x - 5$.

- (i) (4 points) Determine the local minima and maxima of $f\,.$
- (ii) (3 points) Prove that f has global extrema and determine them.
- (iii) (3 points) Prove that for any $x \in [0,3]$,

$$f(x) = f(0) + \sum_{k=1}^{3} \frac{f^{(k)}(0)}{k!} x^{k}.$$

Problem 2: Riemann Integral

(i) (6 points) Compute the following Riemann integrals:

(a)
$$\int_0^1 x e^x dx;$$
 (b) $\int_0^2 |x-1| dx.$

(10 points)

(10 points)

(ii) (4 points) Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that $\int_a^b f(x)dx = \frac{1}{2}(b^2 - a^2)$. Show that there exists $x_0 \in [a,b]$ such that $f(x_0) = x_0$.

Problem 3: Normed spaces

(i) (5 points) Suppose that $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ are normed spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Let $T: V \to W$ be a linear transformation and define the function $\|\cdot\|: V \to \mathbb{R}$ by

$$||x|| := ||x||_V + ||T(x)||_W$$
 for all $x \in V$.

Prove that $\|\cdot\|$ is a norm on V.

(ii) (5 points) Let V be a normed space over \mathbb{R} , $A \subseteq V$ be closed in V and $t \in \mathbb{R}, t > 0$. Define $tA := \{tx \mid x \in A\}$. Prove that tA is closed in V.

Problem 4: Differentiability in \mathbb{R}^n

- (i) (5 points) Let $f : \mathbb{R}^n \to \mathbb{R}$, $f(x_1, \ldots, x_n) = x_1^2 + x_2^2 + \ldots + x_n^2$. Show that f is differentiable on \mathbb{R}^n and compute its derivative.
- (ii) (5 points) Let $g: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function such that g(tx) = tg(x) for all $t \in \mathbb{R}$ and all $x \in \mathbb{R}^n$. Show that g(x) = g'(0)(x) for all $x \in \mathbb{R}^n$.

Problem 5: Inverse Function Theorem

Consider the function

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad f(x,y) = \left(\begin{array}{c} x^2 - y^2 \\ 2xy \end{array} \right).$$

- (i) (4 points) Show that f is continuously differentiable and compute its derivative.
- (ii) (3 points) Show that f is locally invertible around every point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.
- (iii) (3 points) Does f have a global inverse?

(10 points)

(10 points)

(10 points)