Basismodul Analysis f. MCS-BSc

Please write your name on each sheet and number all pages. At the end of the examination, put the sheets with your solutions in the folded examination sheet.

Name:
First name:
Matr.-Nr.:
Studies:
\square Studienleisteung (Schein)
\square Prüfungsleistung (Bachelor)

Important:

- Time for the examination: $\mathbf{2 4 0}$ Minutes. Total amount of points: $\mathbf{1 0 0}$ points.
- Admitted material: 4 handwritten A4 sheets with your signature.
- All steps in the solutions and partial results need sufficient explanation.
- Good luck!

Problem	1	2	3	4	5	6	7	8	9	10	Σ	Note
Maximal Points	10	10	10	10	10	10	10	10	10	10	100	
Given Points												

Analysis I

Problem 1: Logic and Natural Numbers
(10 points)
(i) (3 points) Show that the following sentence holds for all nonempty sets $X \neq \emptyset$ and all unary predicates P on X :

$$
(\exists x \in X)[P(x) \rightarrow(\forall y \in X) P(y)] .
$$

(ii) (3 points) Let $f: \mathbb{N} \rightarrow\{0,1\}$. Show that

$$
(\forall n)(\exists m>n)(f(m)=0) \vee(\forall n)(\exists m>n)(f(m)=1) .
$$

(iii) (4 points) Prove by induction that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(i) (5 points) Let X, Y be nonempty sets and $f: X \rightarrow Y$ be an arbitrary function. Define $x_{1} \sim x_{2}: \Longleftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$. Show that \sim is an equivalence relation on X and that every equivalence relation on X can be obtained in this way (for suitable Y and f).
(ii) (5 points) Let (X, d) be a metric space. Prove that

$$
|d(f, g)-d(u, v)| \leq d(f, u)+d(g, v)
$$

for all $f, g, u, v \in X$.

Problem 3: Sequences and series
(10 points)
(i) (5 points) Show that for each sequence $\left(a_{n}\right)_{n}$ in \mathbb{R}

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|a_{k}\right|}{1+\left|a_{k}\right|} \quad \text { converges }
$$

and that for all sequences $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|a_{k}+b_{k}\right|}{1+\left|a_{k}+b_{k}\right|} \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|a_{k}\right|}{1+\left|a_{k}\right|}+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|b_{k}\right|}{1+\left|b_{k}\right|}
$$

Hint: $t \mapsto \frac{t}{1+t}$ is increasing for $t>-1$.
(ii) (5 points) Let $f:[0,1] \rightarrow[0,1], f(x)=1-x$. For $x \in[0,1]$ define $x_{0}:=x, x_{n+1}:=f\left(x_{n}\right)$. For which $x \in[0,1]$ does $\left(x_{n}\right)_{n}$ converge?

Problem 4: Continuity

(10 points)
(i) (5 points) Determine in which points $x \in \mathbb{R}$ the functions

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)= \begin{cases}(\sin x)\left(\cos \frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

and

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)= \begin{cases}(\cos x)\left(\sin \frac{1}{x}\right) & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

are continuous?
(ii) (5 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and strictly increasing. Show that f is uniformly strictly increasing in the sense

$$
(\forall \varepsilon>0)(\exists \delta>0)\left(\forall x_{1}, x_{2} \in[0,1]\right)\left(x_{1}+\varepsilon \leq x_{2} \Rightarrow f\left(x_{1}\right)+\delta \leq f\left(x_{2}\right)\right)
$$

Problem 5: Differentiability in \mathbb{R}

(10 points)
(i) (4 points) Compute the derivatives of the following functions:
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\sin \left(x^{5}+3 x\right)$;
(b) $g:] 0, \infty[\rightarrow \mathbb{R}, \quad g(x)=2 \exp (\ln x)$.
(ii) (3 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>0$ for all $x \in[a, b]$. Show that for any $c \in \mathbb{R}$, the equation $f(x)=c$ has at most one solution.
(iii) (3 points) Determine all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
(\forall x \in \mathbb{R})\left(f^{\prime}(x)=f(x)\right)
$$

Analysis II

Problem 6: Extrema and Taylor series
(10 points)
Consider the function $f:[0,3] \rightarrow \mathbb{R}, \quad f(x)=2 x^{3}-9 x^{2}+12 x-5$.
(i) (4 points) Determine the local minima and maxima of f.
(ii) (3 points) Prove that f has global extrema and determine them.
(iii) (3 points) Prove that for any $x \in[0,3]$,

$$
f(x)=f(0)+\sum_{k=1}^{3} \frac{f^{(k)}(0)}{k!} x^{k} .
$$

Problem 7: Riemann Integral

(10 points)
(i) (6 points) Compute the following Riemann integrals:
(a) $\int_{0}^{1} x e^{x} d x$;
(b) $\int_{0}^{2}|x-1| d x$.
(ii) (4 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{a}^{b} f(x) d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$. Show that there exists $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=x_{0}$.

Problem 8: Normed spaces

(10 points)
(i) (5 points) Suppose that $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ are normed spaces over \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. Let $T: V \rightarrow W$ be a linear transformation and define the function $\|\cdot\|: V \rightarrow \mathbb{R}$ by

$$
\|x\|:=\|x\|_{V}+\|T(x)\|_{W} \quad \text { for all } x \in V
$$

Prove that $\|\cdot\|$ is a norm on V.
(ii) (5 points) Let V be a normed space over $\mathbb{R}, A \subseteq V$ be closed in V and $t \in \mathbb{R}, t>0$. Define $t A:=\{t x \mid x \in A\}$. Prove that $t A$ is closed in V.

Problem 9: Differentiability in \mathbb{R}^{n}
(10 points)
(i) (5 points) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$. Show that f is differentiable on \mathbb{R}^{n} and compute its derivative.
(ii) (5 points) Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function such that $g(t x)=\operatorname{tg}(x)$ for all $t \in \mathbb{R}$ and all $x \in \mathbb{R}^{n}$. Show that $g(x)=g^{\prime}(0)(x)$ for all $x \in \mathbb{R}^{n}$.

Problem 10: Inverse Function Theorem

(10 points)
Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f(x, y)=\binom{x^{2}-y^{2}}{2 x y}
$$

(i) (4 points) Show that f is continuously differentiable and compute its derivative.
(ii) (3 points) Show that f is locally invertible around every point $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(iii) (3 points) Does f have a global inverse?

