
Chapter 4
Functions of Several Variables: Higher derivatives

The Theorem of Hermann Amandus Schwarz

The general principle of higher derivatives involves, as we shall see in this chapter,
a certain understanding of multilinear algebra. We shall cross the bridge of its
elementary principles when we get to it.

But let us begin more modestly with second derivatives, where the situation
is still simple. So let us assume that X is an open set in V = R

n and that
f :X → W = R

m is a differentiable function. Then, by definition, the derivative
f ′(x):V → W exists for all x ∈ X and is a linear map, that is, an element of
Hom(V,W ). Thus we have before us the differential form

(1) f ′:X → Hom(V,W ) ∼= Mmn(R) ∼= R
mn; f ′(x):V →W linear.

The vector space Hom(V,W ) is a Banach space with respect to the operator norm
(cf. 1.33).

If f ′ is differentiable, then for each x ∈ X the function f ′′(x):V → Hom(V,W )
is a linear map V → Hom(V,W ), i.e. a member of Hom

(
V,Hom(V,W )

)
which,

after a selection of bases, we may consider as a linear map Rn → R
mn; it is

therefore determined by a mn × n matrix with mn2 entries. The special case
n = 1 was easy enough, because the first derivative of a curve is a curve and so
the second derivative is again the derivative of a curve.

Let us first consider the special case m = 1, that is the case of a level function
f :X → R on an open subset X of E ∼= R

n. We recall that this is not such a
great restriction since a function into W ∼= R

m is not more than an m-tuple of
level functions. Now the derivative Daf was identified with a vector, the gradient,
via the inner product (·|·) on E such that (Daf)(v) = (grada f |v) for all v ∈ E
(cf. 6.68 ff.). The function x 7→ gradx f :X → E = R

n may be differentiable;
if it is, then the second derivative at x, as the derivative of x 7→ gradx f =(
(∂1f)(x), . . . , (∂nf)(x)

)
, is a linear map H(x):E → E such that

grada+h f = grada f +H(x)(h) + ‖h‖R(h) with R(h)→ 0 for h→ 0.

For all u ∈ E this gives

(grada+h f | u) = (grada f | u) + (H(x)(h) | u) + ‖h‖(R(h) | u).

Thus as a member of Hom
(
E,Hom(E,R)

)
, for v, w ∈ E we have f ′′(x)(v)(w) =

(H(x)v | w). This means that f ′′(x) may be considered as the bilinear form
(v, w) 7→ (H(x)v | w).
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As E = R
n, then the linear map H(x) is canonically given by a matrix, namely,

in view of Theorem 6.49, by the square matrix
(
(∂k∂jf)(x)

)
j,k=1,...,n

. This means
that we have to deal with mixed partial derivatives x 7→ (∂k∂jf)(x) : X → R. In
general, we do not have

(∂k∂jf)(x) = (∂j∂kf)(x).

However, there are, fortunately, situations where we can make this conclusion. It
should be clear at this early stage that this is an important result.

Commuting partial derivatives

Theorem 4.1. (H. A. Schwarz) For a twice continuously differentiable function
f :X → R on an open set of Rn we have

(2) (∀j, k = 1, . . . , n; x ∈ X) (∂k∂jf)(x) = (∂j∂kf)(x).

The matrix of f ′′(x) is symmetric for all x ∈ X. ut

From the formulation of this theorem we see that the core of the matter concerns
two variables, since for the computation of the j-th and k-th variable all other n−2
variables remain constant. It proof will readily follow from a more general theorem
which we begin to discuss in the following.

In order to understand the situation we
consider a function f :X → R, X ⊆ E ∼=
R
n and consider two directional derivat-

ives determined by two linearly indepen-
dent vectors e1 and e2, and we assume
as usual that a is an interior point of
X. We proceed from a by s units to
a + s·e1 and from there by t units to
a+ s·e1 + t·e2; we focus on the difference
gt(s) = f(a + s·e1 + t·e2) − f(a + s·e1)
which obviously also depends on t.

Figure 4.1

Now we are interested in the difference

G(s) def= gt(s)− gt(0) =(f(a+ s·e1 + t·e2)− f(a+ s·e1))− (f(a+ t·e2)− f(a))
=(f(a+ s·e1 + t·e2)− f(a+ t·e2))− (f(a+ s·e1)− f(a)).

If we define functions ht on some neighborhood of 0 in R by ht(s)
def= f(a +

s·e1 + t·e2)− f(a+ t·e2), then we have

G(s) = gt(s)− gt(0) = ht(s)− h0(s).

Now let us make the following assumption
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(A.1) The directional derivatives p(u) def= ∂u;e1f exist in an entire neighborhood
of a.

Let U be an open ball neighborhood of a such that (A.1) holds for u ∈ U
and assume that s and t are chosen so that a+ s·e1, a+ t·e2, a+ s·e1 + t·e2 ∈ U .
Then for each such t the functions s′ 7→ ht(s′) are differentiable for all sufficiently
small 0 ≤ s′ ≤ s. Thus G is differentiable for all sufficiently small s; and since
h′t(s) = p(a+ s·e1 + t·e2) we have G′(s) = p(a+ s·e1 + t·e2)− p(a+ s·e1). By the
Mean Value Theorem 4.29, of Analysis I, there is a number σ = σ(s, t) between 0
and s such that G(s) = G′(σ)s. Thus we obtain

(3) G(s) =
(
ht(s)− h0(s)

)
s =

(
p(a+ σ·e1 + t·e2)− p(a+ σ·e1)

)
s,

where σ = σ(s, t) is between 0 and s.
In order to be able to work further on (3) we make a further assumption

(A.2) The directional derivatives ∂x;e2p exist for all x in a neighborhood of a.

We may assume now that U is an open ball neighborhood of a such that (A.1)
holds for u ∈ U and (A.2) holds for x ∈ U . We continue to assume that s and t
were chosen so that a+ s·e1, a+ t·e2, a+ s·e1 + t·e2 ∈ U . Now we apply the Mean
Value Theorem again and find a number τ between 0 and t such that

p(a+ σ·e1 + t·e2)− p(a+ σ·e1) =
(
∂a+σ·e1+τe2;e2p

)
t.

Thus for all sufficiently small s and t we have the statement

(4) G(s) =
(
∂(a+σ·e1+τ ·e2);e2p

)
st,

with σ = σ(s, t) between 0 and s and τ = τ(s, t) between 0 and t. We observe
that (s, t)→ (0, 0) implies (σ, τ) =

(
σ(s, t), τ(s, t)

)
→ (0, 0).

At this point we make another decisive assumption; for its formulation we
abbreviate the expression ∂x;e2p by (∂2∂1f)(x). Note that ∂2∂1f :U → R is a well
defined function.

If e1 and e2 are the first two standard basis vectors of Rn, then this notation is consistent

with the one we introduced in Definition 6.48.

(A.3) The function ∂2∂1f is continuous at a.

Then by (3) and by lim(s,t)→(0,0)(σ, τ) = (0, 0) we get

(4) G(s) = (∂2∂1f)(a)st+ stR(s, t)

with a remainder function R satisfying lim(s,t)→(0,0)R(s, t) = 0.
On the other hand we could produce more information on gt(s) = f(a+ se1 +

te2)− f(a+ s·e1), if we could work with directional derivatives in in the direction
of of e2. Therefore we demand

(A.4) The directional derivatives q(u) def= ∂u;e2f exist in all points u = a + se1

with sufficiently small s.
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Now this means, specifically, that for all sufficiently small s we have remainder
functions Rs such that limt→0Rs(t) = 0 and that

gt(s) =f(a+ s·e1 + t·e2)− f(a+ s·e2)

=
(
∂a+s·e1;e2f

)
·t+ tRs(t) = q(a+ s·e1)t+ tRs(t),

gt(0) =f(a+ t·e2)− f(a)

=
(
∂a;e2f

)
·t+ tR0(t) = q(a)t+ tR0(t).

Thus, expressing G(s) = gt(s) − gt(0) from these formulae on the one hand and
from (4) on the other, we get the relation

(5) q(a+ s·e1)− q(a) = (∂2∂1f)(a)s+ sR(s, t)−Rs(t) +R0(t)

for all sufficiently small s and t.

Now assume that we are given an ε > 0. Then we choose δ > 0 according to
(4) in such a fashion that, |s|, |t| < δ implies |R(s, t)| < ε. For these s and t we
have

(6) |q(a+ s·e2)− q(a)− (∂2∂1f)(a)s| ≤ ε|s|+ |Rs(t)|+ |R0(t)|.

We recall Rs(t), R0(t)→ 0 for t→ 0 and all s. Thus for each |s| < δ we let t tend
to 0 in (6) and thus finally find that

(7) (∀ε > 0)(∃δ > 0) 0 < |s| < δ⇒
∣∣∣∣q(a+ s·e1)− q(a)

s
− (∂2∂1f)(a)

∣∣∣∣ ≤ ε.
Notice that the step from (6) to (7) is a bit tricky. A division by a nonzero s in (6) would

be still alright, but an attempt to simultaneously letting (s, t) tend to zero would cause failure

because of the term (|Rs(t)| + |R0(t)|)/s. The fixing of s and letting t tend to zero first is

therefore essential. This strategy is made possible by the fact that t is no longer present in any

of the other terms in (6).

Statement (7) means exactly that q has at a a directional derivative in the
direction of e1, equalling (∂2∂1f)(a). We therefore have proved the following
theorem, that quickly entails Schwarz’ Theorem 4.1—with much room to spare.

Theorem 4.2. For a function ϕ:X → R, X ⊆ E ∼= R
n and for an inner point a

of X and two vectors e1, e2 of E we write (∂jϕ)(x) = ∂x,;ejϕ, j = 1, 2 in all points
x in which these directional derivatives exist. We assume the following hypotheses
hold for a f :X → R:
(i) The directional derivative ∂1f(x) exists for all x in a neighborhood of a.
(ii) The directional derivative (∂2∂1f)(x) def= ∂2(∂1f)(x) exists for all x in a neigh-

borhood U of a and ∂2∂1f :U → R is continuous at x = a.
(iii) The directional derivative (∂2f)(a + se1) exists in all points a + se1 with

sufficiently small s.

Then (∂1∂2f)(a) def= ∂1(∂2f)(a) exists and equals (∂2∂1f)(a). ut
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Theorem 4.2 and its proof remain true if e1 and e2 are linearly dependent, but the information

produced in this special case is a triviality.

Let us look at the following example of a function f :R2 → R. We observe that

sin t cos t(cos2 t− sin2 t)r2 =
r2

2
sin 2t cos 2t =

r2

4
sin 4t

and define

f(w) =
{

0 for w = 0,
r2

4 sin 4t for w = (r cos t, r sin t), 0 < r and 0 ≤ t < 2π.

Then, for (x, y) 6= (0, 0) we may write

f(x, y) = xy(x2 − y2)(x2 + y2)−1

All second partial derivatives exist everywhere, however,

∂1∂2f(0) = 1 and ∂2∂1f(0) = −1.

Thus Theorem 4.2 (and therefore also Schwarz’s Theorem 4.1) cannot be improved
much by weakening the hypotheses. The partial derivatives ∂k∂jf(a) are also
written ∂2f/∂xk∂xj |x=a, and the linear map H(a) and its matrix are called the
Hessian, respectively, Hesse matrix. The German expression is Hesse–Matrix.

The second degree Taylor expansion

We now return to a twice continuously differentiable function f :X → R where
X is an open set of the Hilbert space E = R

n. Let a ∈ X and assume that for
δ > 0 we have Uδ(a) ⊆ X. We again identify f ′′(a) with the bilinear map (v, w) 7→
(H(x)(v) | w); under the hypotheses Schwarz’ Theorem 4.1 we know that this is
a symmetric bilinear form, that is, (H(x)(v) | w) =

(
v | H(x)(w)

)
; in particular,

v 7→ (H(x)(v) | v) =
(
v | H(x)(v)

)
is a quadratic form. If B is a symmetric

bilinear form, we know that the derivative of the function f :E → R defined by
f(x) = B(x, x) is the linear function given by f(x)(v) = 2B(v, x) by Corollary
3.10. The second derivative is therefore given by f ′′(x)(v)(w) = 2B(v, w), and the
Hesse matrix H(x) of f is determined by (H(x)(v) | w) = f ′′(x)(v)(w) = B(v, w).
The the matrix elements bjk = (H(x)ej | ek) of H(x) are precisely the coefficients
B(ej , ek) of the bilinear map, where as usual the e1, . . . , en are the standard basis
vectors of Rn.

Theorem 4.3. (Taylor’s Theorem of degree 2) Let f :X → R be a function on an
open set X of the Hilbert space E = R

n with the standard inner product (x | y).
Assume that the second partial derivatives exist and are continuous in all x ∈ X.
Then we have a symmetric linear map H(a):E → E with coefficient matrix(

∂2f

∂xj∂xk

∣∣∣∣
x=a

)
j,k=1,...,n
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depending continuously on a ∈ X and defining a quadratic form v 7→ (H(x)v |
v):E → R. The first derivative satisfies f ′(x)(v) = (gradx f | v) and the second
derivative f ′′(x) ∈ Hom

(
E,Hom(E,R)

)
satisfies f ′′(x)(v)(w) = (H(x)v | w).

Then for each a ∈ X there is a function ra:X → R which is continuous at a and
satisfies ra(a) = 0 such that

(8) f(x) = f(a) + (grada f | x− a) +
1
2
(
H(a)(x− a) | x− a

)
) + ‖x− a‖2ra(x).

Proof . Since the second derivatives exist, the first partial derivatives are continu-
ous (cf. 3.5); hence the first derivative f ′(x) exists for all x by Theorem 3.14. The
second partial derivatives are the first partial derivatives of f ′:X → Hom(E,R);
since these are assumed to be continuous, f ′′(x) exists for all x ∈ X and f ′′:X →
Hom

(
E,Hom(E,R)

)
is continuous.

The assertions f ′(x)(v) = (gradx f | v) and f ′′(x)(v)(w) = (H(x)v | w) were
proved in the paragraph preceding the theorem.

We now have to establish the existence of ra such that (8) holds. We simplify
matters by considering

F (x) = f(x)− f(a)− f ′(a)(x− a)− 1
2
f ′′(a)(x− a)(x− a).

If the assertion is proven for F then it holds for f , but F (a) = 0, F ′(a) = 0, and
F ′′(a) =). Thus we may assume without losing generality that the f and its first
two derivatives vanish at a. We have to show that limx→a ‖x − a‖−2·f(x) = 0.
For this purpose let ε > 0, we have to find a δ > 0 so that Uδ(a) ⊆ X and
such that for ‖x − a‖ < δ we have ‖f(x)‖ ≤ ‖x − a‖2ε. By hypothesis, the
function f ′′:X → Hom(Hom(Rn,R),R) is continuous and f ′′(a) = 0. Hence we
find a δ > 0 such that ‖f ′′(x)(e)(e′)‖ ≤ ε for all e, e′ ∈ Rn with ‖e‖, ‖e′‖ ≤ 1.
(Another way of saying this is that the operator norm of the Hessian ‖H(x)‖ is
≤ ε for ‖x − a‖ < δ.) Now assume 0 < ‖x − a‖ ≤ δ. Set r = ‖x − a‖ < δ
and let e be the unit vector r−1·‖x − a‖. We define ϕ: ]−δ, δ[ → R by ϕ(t) =
f(a+ t·e). Then ϕ(0) = f(a) = 0. By the Chain Rule we get ϕ′(t) = f ′(a+ t·e)(e),
notably ϕ′(0) = f ′(a)(e) = 0; and applying the Chain Rule once more we get
ϕ′′(t) = f ′′(a + t.e)(e)(e) = (H(x + t·a)(e) | e), and thus |ϕ′′(t)| ≤ ε for |t| < δ.
Now we apply the second order Taylor Theorem 4.61 to ϕ and find a θ ∈ [−t, t],
depending on t such that ϕ(t) = ϕ(0)+ϕ′(0)t+1/2ϕ′′(θ)t2 = t2/2ϕ′′(θ). Therefore
|f(a+t·e)| = |ϕ(t)| ≤ t2ε

2 . Setting t = r we obtain |f(x)| ≤ ‖x−a‖2· ε2 < ε‖x−a‖2.
This had to be shown. ut

The second degree Taylor expansion (8) is crucial for a finer investigation of the
behavior of a level function f at a critical point a, i.e. a point with grada f = 0.
Obviously, in a critical point a, the Taylor expansion of degree 2 yields

(11) f(x)− f(a) =
1
2

(H(a)h | h) + ‖x− a‖2ra(x); lim
x→a

ra(x) = 0.
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If we set h = x− a, then

(H(a)h | h) =
∑

1≤j, k≤n

(∂j∂kf)hjhk

with (∂k∂jf) = (∂j∂kf) for all j and k.
In Linear Algebra one deals with the following

Exercise E4.1. Prove:
Proposition. Let E be a finite dimensional Hilbert space over K = R or K = C.
If ϕ ∈ Hom(E,E) such that (ϕ(x)|y) =

(
x|ϕ(y)

)
for all x, y ∈ E, then

(i) all eigenvalues of ϕ are real, and
(ii) if x is an eigenvector for λ and y an eigenvector for κ 6= λ, then (x|y) = 0,

that is, x and y are perpendicular.
(iii) E has an orthonormal basis e1, . . . , en, that is, a basis such that (ej |ek) = δjk

with the Kronecker delta δjk, consisting of eigenvectors of ϕ.
(iv) If x = ξ1·e1 + · · ·+ ξn·en for an orthonormal basis of eigenvectors of ϕ, then

(ϕ(x)|x) =
∑n
j=1 λjξ

2
j .

[Hint. We need recourse to some basic facts on eigenvalues. (i) Since Rn ⊆ Cn we
may assume K = C. Let λ be an eigenvalue and let e be a nonzero eigenvector of
unit length. Then λ = λ(e|e) = (λ·e|e) = (ϕ(e)|e) =

(
e|ϕ(e)

)
= (e|λ·e) = λ(e|e) =

λ. (ii) Let ϕ(x) = λ·x and ϕ(y) = κ·y. Then λ(x|y) = (ϕ(x)|y) =
(
x|ϕ(y)

)
=

κ(x|y), that is, (λ− κ)(x|y) = 0. (iii) Every eigenspace has an orthonormal bases
obtained by the Gram-Schmidt procedure. The union of these orthonormal bases
over all eigenspaces form an orthonormal basis of E. (iv) is now straighforward.]

As a consequence of Exercise E4.1, we obtain the following result.

Proposition 4.4. Let f :X → R be a twice continuously differentiable level func-
tion on an open subset X of Rn. Assume that a ∈ X is a critical point. There
is an orthonormal basis e1, . . . , en of Rn, real numbers λ1, . . . , λn, and a function
ra:X → R with limx→a f(r) = 0 such that with x =

∑n
j=1 xj ·ej we have

(12) f(x)− f(a) =
1
2

n∑
j=1

λj(xj − aj)2 + ‖x− a‖2r(x).
ut

The quadratic form h 7→ (H(a)h, h) is positive definite iff λj > 0 for all j =

1, . . . , n. If we assume this, then ‖x‖∗
def= 1

2

√∑n
j=1 λjx

2
j defines a euclidean norm

on E. Since the norm used for the Taylor expansion was arbitrary, we may select
the remainder function r in such a fashion that (12) takes the form

(12′) f(x)− f(a) = ‖x− a‖2∗ + ‖x− a‖2∗r(x) = ‖x− a‖2∗
(
1 + r(x)

)
.

Since limx→a r(x) = 0 we find a δ > 0 such that ‖x− a‖∗ < δ implies x ∈ X and
|r(x)| < 1. Thus (12′) shows that f(x)− f(a) > 0 for 0 < ‖x− a‖∗ < δ. Hence f
attains a local minimum at a. Therefore we have



8 4. Functions of Several Variables: Higher derivatives

Corollary 4.5. If, under the hypotheses of Proposition 4.4, the quadratic form
H(a) is positive (respectively, negative) definite, then f attains in a a local mini-
mum, respectively, maximum. ut

The simple examples of the quadratic function f(x, y) = x2 + y2:

Figure 4.2

or the quadratic function f , f(x, y) = x2 − y2:

Figure 4.3

or the degenerate quadratic functionf , f(x, y) = x2:
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Figure 4.4

Illustrate what happens in the presence and in the absence of definiteness of
f ′′(0) in the critical point 0.

It is a good exercise to draw the corresponding pictures of f(x, y) = x2 + y3.

Exercise E4.2. Sketch the graph of f :R2 → R, f(x, y) = x2 + y3 and draw a
picture of the level lines.

Higher Derivatives and Theorem of Taylor
The purpose of this section is to treat Taylor’s Theorem for level functions in full
generality.

We consider an open subset X of a finite dimensional normed space E and a
function f :X → R whose higher derivatives we wish to consider sucessively. We
shall assume that successive derivatives exist and are continuous as far as we shall
consider them.
First derivative. f ′:X → Hom(E,R).
Second derivative. f ′′:X → Hom

(
E,Hom(E,R)

)
.

Third derivative. f (3):X → Hom
(
E,Hom

(
E,Hom(E,R)

))
).

m-th derivative. f (m):X → Hom
(
E,Hom(E · · ·Hom(E︸ ︷︷ ︸

m times

,R )) · · ·)︸ ︷︷ ︸
m times

.

Obviously we have to deal with the iterated Hom-vectorspaces such as they
occur as range spaces of the higher derivatives of a level function. Therefore we
have to discuss some multilinear algebra. We first illustration what we are doing
in the case of replacing the n2-dimensional vector space Hom

(
E,Hom(E,R)

)
by

a more managable one.

An interlude on multilinear algebra
Let ϕ ∈ Hom

(
E,Hom(E,R)

)
. Thus ϕ is a linear map E → Hom(E,R). That

is, for an element v ∈ E, the image ϕ(v) is itself a linear form ϕ(v):E → R.
Specifically, ϕ(v)(w) ∈ R for all w ∈ E. Since ϕ:E → Hom(E,R) is linear, we
have ϕ(t·v1 + v2) = t·ϕ(v1) + ϕ(v2) fo all t ∈ R and v1, v∈E. By the definition of
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pointwise scalar multiplication and addition of functions this means tha

(13) (∀t ∈ R, v1, v2, w ∈ E)ϕ(t·v1 + v2)(w) = t·ϕ(v1)(w) + ϕ(v2)(w).

Since ϕ(v):E → R is linear for all v, similarly we have

(14) (∀t ∈ R, v, w1, w2 ∈ E)ϕ(v)(t·w1 + w2) = t·ϕ(v)(w1) + ϕ(v)(w2).

Let us define a function ϕ̃:E × E → R by

(15) ϕ̃:E × E → R, ϕ̃(v, w) = ϕ(v)(w).

By (13) and (14), ϕ̃ is a bilinear function or form. Let us denote by Homm(E;R)
the set of all multilinear forms E× · · ·×︸ ︷︷ ︸

m times

E → R, that is, maps which are linear

in each argument separately if the other arguments are fixed. Then we have
ϕ̃ ∈ Hom2(E;R). As an example, if v1, . . . , vn ∈ Rn, let det(v1, . . . , vn) denote the
determinant of the matrix whose rows are v1, ,̇vn in that order, then det:En → R

is an example of a multilinear form. Notice that Homm(E;R ⊆ REm is closed
under pointwise scalar multiplication and under pointwise addition in the vector
space RE

m

of all functions Em → R and is, therefore, a vector space. Thus (15)
defines a function

ϕ 7→ ϕ̃ : Hom
(

Hom(E,R)
)
→ Hom2(E;R).

Exercise E4.3. Show that ϕ 7→ ϕ̃ is linear.
[Hint. Prove for instance that (ϕ+ ψ)˜ = ϕ̃+ ψ̃.]

Conversely, if β:E × E → R is a bilinear form, then β(v, ·):E → R is linear
and v 7→ β(v, )̇:E → Hom(E,R) is linear as well. We define

(16) β∗:E → Hom(E,R), β∗(v)(w) = β(v, w).

Exercise E4.4. Show that the function β 7→ β∗ is linear and that it is an inverse
of the function ϕ 7→ ϕ∗.
[Hint. Prove for instance that (α + β)∗ = α∗ + β. Moreover, show that ϕ̃)∗ = ϕ

and β̃∗ = β.]
After this exercise we know that ϕ 7→ ϕ̃: Hom

(
Hom(E,R)

)
→ Hom2(E;R) is

an isomorphism of vector spaces, and is defined quite naturally.

Proposition 4.6. For each natural number m and each

ϕ ∈ Hom
(
E,Hom(E · · ·Hom(E︸ ︷︷ ︸

m times

,R )) · · ·)︸ ︷︷ ︸
m times
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we define ϕ̃(v1, . . . , vm) def= ϕ(v1)(v2) · · · (vm) for v1, . . . , vm ∈ E. Then ϕ̃:Em →
R is a multilinear form and

(17) ϕ 7→ ϕ̃ : Hom
(
E,Hom(E · · ·Hom(E︸ ︷︷ ︸

m times

,R )) · · ·)︸ ︷︷ ︸
m times

→ Homm(E;R)

is an isomorphism of vector spaces.

Proof . Exercise. ut

Exercise E4.5. Prove Proposition 4.6.
[Hint. Either induction, or arguments applying to m arguments completely anal-
ogous to those which we went through above for 2 arguments, show that ϕ̃ is
multilinear and that ϕ 7→ ϕ̃ is linear. For a multilinear form β:Em → R define β∗

in the domain of ϕ 7→ ϕ̃ exactly as it was done for bilinear maps in (16) and show
that ϕ̃)∗ = ϕ and β̃∗ = β.]

As a consequence of this interlude “we may “identify” the two isomorphic vector
spaces in (17) and therefore consider the m-th derivative f (m)(x) of a function
f :X → R with X open in E as a multilinear form with m arguments, writing

f (m)(x)(v1, . . . , vm) instead of f (m)(x)(v1)(v2) · · · (vm).

Remark 4.7. Assume E = R
n. Let β ∈ Homm(E;R), and let e1, . . . , en be the

standard basis vectors of Rn,

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Define
aj1···jm

def= β(ej1 , . . . , ejm), 1 ≤ jk ≤ n, k = 1, dots,m.

Now take
v1 = v

(1)
1 , . . . , v(1)

n , . . . , vm = (v(m)
1 , . . . , v(m)

n ),

then

(18) β(v1, . . . , vm) =
∑

1≤jk≤n

aj1···jmv
(1)
j1
· · · v(m)

jm
.

Proof . This is a straightforward exercise. ut

Exercise E4.6. Prove Remark 4.7.
[Hint. Write v1 =

∑n
j1=1 v

(1)
j1
ej1 , . . . and use multilinearlity.]

This remark shows how multinear maps are handled in a computational fashion.
The numbers aj1···jm are called the coefficients of the multilinear form β. The case
m = 2 is familiar from linear algebra; the coefficients aj1j2 simply form an n × n
matrix.
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Since f (m) is exactly such a multilinear form as β in the preceding remark, the
question arises what the coefficients aj1···jm are in this case.

Proposition 4.8. Let f :X → R, X open in Rm be an m times differentiable
level function. Then for each x ∈ X, the coefficients aj1···jk of the multilinear
form f (k), k = 1, 2, . . . ,m are

(19) aj1···jk = (∂j1 · · · ∂jkf)(x).

Proof . We prove by induction that

(20k) f (k)(x)(v1, . . . , vk) =
∑

1≤jp≤n
1≤p≤k

(∂j1 · · · ∂jkf)(x)v(1)
j1
· · · v(k)

jk

holds for k = 1, 2, . . . ,m. For k = 1 we know from 7.12 that

f ′(x)(v) = (gradx f |v) = (∂1f)(v1) + · · ·+ (∂nf)(vn).

Thus (201) is true. Assume that the assertion has been proved for 1, 2, . . . , k <
m. Then f (k):X → F

def= Homk(E,R) and for v1, . . . , vk ∈ E we set F (x) =
f (k)(x)(v1, . . . , vk) for x ∈ X. Then the function F :X → R is differentiable by
hypothesis and with an identification of Hom

(
Homk(E,R)

)
with Homk+1(E;R)

we write the linear form F ′(x):E → R as

F ′(x)(vk+1) = f (k+1)(x)(v1, . . . vk, vk+1)

Now by 7.12 once more we have

(21) F ′(x)(vk+1) = (∂1F )(x)v(k+1)
1 + · · ·+ (∂nF )(x)v(k+1)

n .

Applying the induction hypothesis to F we know that

(20k) F (x)(v1, . . . , vk) =
∑

1≤jp≤n
1≤p≤k

(∂j1 · · · ∂jkf)(x)v(1)
j1
· · · v(k)

jk
.

Taking (20k) and (21) together we obtain (20k+1), and this completes the induc-
tion. ut

Definition 4.9. A multilinear form β ∈ Homk(E;R) is called symmetric if for
each j = 1, . . . , k − 1 we have

(22) β(v1, . . . , vj , vj+1, . . . , vk) = β(v1, . . . , vj+1, vj , . . . , vk).

Proposition 4.10. For a multilinear form β ∈ Homk(E;R) the following state-
ments are equivalent:
(i) β is symmetric.
(ii) For each permutation (that is, bijection) σ: {1, . . . , k} → {1, . . . , k} we have

(23) β(v1, . . . , vk) = β(vσ(1), . . . , vσ(n)).
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Proof . In the elementary theory of permutation groups one shows that the full
group of all permutations of the set {1, . . . , n} is generated by permutations of two
adjacent elements. This proves (i)⇒(ii). The reverse implication is trivial. ut

Exercise E4.7. Prove that every permutation

f =
(

1 2 · · · n
f(1) f(2) · · · f(n)

)
of {1, 2, . . . , n} can be written as a composition of permutations which are com-
positions of “transpositions” of “adjacent elements”

tj =
(
n1 n2 · · · nj nj+1 · · · nk
n1 n2 · · · nj+1 nj · · · nk

)
.

[Hint. Step 1: Show that every permutation is a composition of cyclic permutations
of suitable disjoint subsets S = {n1, . . . , nk}, n1 < · · · < nk, say

cS =
(
n1 n2 · · · nk−1 nk
n2 n3 · · · nk n1

)
.

A convenient notation of cS is (n1 n2 · · · nk). Step 2: Show

(n1 n2 · · · nk) = (n1 n2) ◦ (n2 n3) ◦ · · · ◦ (nk−2 nk−1) ◦ (nk−1 nk)]

It is convenient to agree to a piece of notation which is primarily applicable to
symmetric multilinear forms.

Definition 4.11. For a multilinear form β ∈ Homk(E;R) and x, v ∈ E we write

(24)
β?xk

def=β(x, . . . , x).

(β?xk−1)(v) def=β(x . . . , x, v). ut

Notice that we are not forming here a k-th power or a k− 1-st power, but that
β?xk is a number, that is, and element of R, and that β?xk−1:E → R is a linear
form, that is, an element of Hom(E,R). If δ:E → Ek is the diagonal map defined
by δ(v) = (v, . . . , v) then

(25) β ? xk = (β ◦ δ)(x).

We shall now give an estimate for the value of a multilinear form. (Cf. E7.14
preceding 7.23.)

Lemma 4.12. Assume that ‖.‖ is a norm on E and that β ∈ Homk(E;R) is a
multilinear form. Then

(26) ‖β‖ def= sup{|β(v1, . . . , vk)| : v1, . . . , vk ∈ E; ‖v1‖, . . . , ‖vk‖ ≤ 1}

is well defined and

(27) (∀v1, . . . , vn) |β(v1, . . . , vn)| ≤ ‖β‖·‖v1‖ · · · ‖vk‖.
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Proof . First we have to argue that the set {|β(v1, . . . , vn)‖ : ‖v1‖, . . . , ‖vk‖} ⊆ R
is bounded. Let B def= {v ∈ E : ‖v‖ ≤ 1} denote the unit ball in E. Then
Bk is the unit ball in the normed space Ek equipped with the norm given by
‖(v1, . . . , vk)‖ = max{‖v1‖, . . . , ‖vk‖}. Then Bk is compact by 6.29. Since

(v1, . . . , vk) 7→ |β(v1, . . . , vk)| : Bk → R

is continuous, it attains its maximum ‖β‖ by the Theorem of the Minimum and
Maximum 3.52. This shows that ‖β‖ well defined.

Now we prove (27). If any of the vj is zero, then (27) is trivially true. Now
assume that ‖vj‖ > 0 for j = 1, . . . , k. Then 1

‖vj‖ ·vj ∈ B, and by the definition of
‖β‖ in (80) we have ∣∣∣∣β( 1

‖v1‖
·v1, . . . ,

1
‖vk‖

·vk
)∣∣∣∣ ≤ ‖β‖.

The multilinearity of β allows us to multiply this inequality with ‖v1‖ · · · ‖vk‖ and
to obtain (27). ut

Notice that this generalizes, at least as far as forms are concerned, the definition
of the operator norm (see 6.33). It should be clear that Lemma 4.12 generalizes
to arbitrary multilinear maps E1 × . . . × Ek → F where the Ej and F are finite
dimensional normed vector spaces over K = R, C.

Exercise E4.8. Prove that Lemma 4.12 defines a norm ‖·‖: Homk(E;R).
Now let us differentiate a multilinear form (cf. 7.23):
Lemma 4.13. Let β ∈ Homk(E,R). Then

(28)
β′(x1, . . . , xk)(v1, . . . , vk)

=β(v1, x2, . . . , xk) + β(x1, v2, x3, . . . , xk) + · · ·β(x1, . . . , xk−1, vk).

In particular,

(29) (β ◦ δ)′(x)(v) = β(v, x, . . . , x) + β(x, v, x, . . . , x) + · · ·β(x, . . . , x, v).

If β is symmetric, then

(∀x, v ∈ E) (β ◦ δ)′(x)(v) =n·(β?xk−1)(v),(30)
(∀x,∈ E) (β ◦ δ)′(x) =n·(β?xk−1),(31)

(∀x,∈ E) (β?xk)′ =k·(β?xk−1).(32)

In (32) we have defined (β?xn)′ def= (β ◦ δ)′(x).

Proof . We compute, using multilinearity, β(x1 + v1, x2 + v2, . . . , xk + vk) =
β(x1, . . . , xk)+

∑
1≤j≤k β(x1, . . . , vj , . . . , xk)+r(v1, . . . , v2), where r(v1, . . . , vk) =∑

1≤j1<j2≤≤k β(x1, . . . , vj1 , . . . , vj2 , . . . , xk) + · · ·. Set v def= (v1, . . . , vk) and define
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‖v‖ def= max{‖v1‖, . . . , ‖vk‖}. Then

‖r(v)‖ ≤
∑

1≤j1<j2<···≤k

‖β‖·‖x1‖ · · · ‖vj1‖ · · · ‖vj2‖ · · · ‖xk‖+ · · ·

≤‖v‖2·C1 + ‖v‖3C2 + · · · ‖v‖k·‖β‖

with numbers Cj which depend on X = (x1, . . . , xk) only. It follows that

lim
v→0
v 6=0

|r(v)|
‖v‖

= 0.

By the definition of the derivative in 7.2 and the uniqueness statement in 7.3 we
may conclude (28). Now (29) is an immediate consequence. If β is symmetric,
then β(x, . . . , v, . . . , x) = β(x, . . . , x, v) = (β?xk−1)(v). Now (30), (31) and (32)
follow successivley from this and the definitions. ut

� In a warning note following 4.20 we pointed out that instructors of el-
ementary calculus like a notation of the type (xn)′ = nxn−1 which is

conceptually problematic, because the prime ′ operates on functions, associating
with a function f again a function f ′. However, xn is not a function; x 7→ xn is
a function pn. Likewise it requires a lot of mind reading to recognize (xn)′ as the
function p′n

A similar warning is in order concerning the notation (β?xn)′ used in (31). We
chose it so as to make it evident that the formula (32) generalizes the formula
p′n = n·pn−1.

The Taylor formula
We now finally consider an m-times continuously differentiable level function
f :X → R, X open in a finite d.imensional normed space E such as e.g. Rn.
Then f (k)(a) ∈ Homk(E;R), k = 1, . . . ,m, a ∈ X. We write f (0) = f .

Lemma 4.14. Define P :E → R by

(33)
P (x) =f(a) +

1
1!
·f ′(a)?(x− a) +

1
2!
·f ′′(a)?(x− a)2 + · · ·

+
1
m!
·f (m)(a)?xm.

Then P (k)(0) = f (k)(a) for k = 0, . . . ,m

Proof . We claim that

P (k)(x) =f (k)(a) +
1
1!
f (k+1)(a)?(x− a) +

1
2!
·f (k+2)(a)?(x− a)2 + · · ·

+
1

(m− k)!
·f (m−k)(a)?xm−k,

k = 0, 1, . . . ,m. This follows by induction from (32). Putting x = a we obtain the
assertion. ut
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We call P the Taylor polynomial for f of degree m. Now we are ready for the
following result. The basic idea of its proof was introduced in the special case of
4.3.

Taylor’s Theorem

Theorem 4.15. Assume that X is an open subset of a finite dimensional normed
space E such as Rn, and that f :X → R is an m-times continuously differentiable
level function. Then for each a ∈ X, there is a function r:X → R such that
limx→a r(x) = 0 and that

(34) f(x) = f(a)+
1
1!
·f ′(a)?(x−a)+ · · ·+ 1

m!
·f (m)(a)?(x−a)m+‖x−a‖m·r(x).

Proof . Let F = f −P where P is the Taylor polynomial for f of degree m. Then
for each a ∈ X we define

r(x) =
{

0 if x = a,
‖x− a‖−m·F (x) if x 6= a.

Then (34) holds and we have to show that r(x)→ 0 for x→ a. Since X is open,
there is a positive number ρ such that the open ball Uρ(a) of radius ρ around a is
entirely contained in X. Assume that ε > 0 is given. We must show that r(x) < ε
for all x which are sufficiently close to a. Since f (m) and then also F (m) are
continuous and F (m)(a) = 0, there is a δ > 0, δ ≤ ρ such that ‖x− a‖ ≤ δ implies
‖F (m)(x)‖ < ε·m!, where ‖F (m)(x)‖ is defined as in 4.12. Now let x ∈ Uδ(a),
x 6= a. We set e def= 1

‖x−a‖ ·(x−a). Then e is a unit vector and we define a function

ϕ: [0, ρ[ → R by ϕ(t) def= F (a + t·e). By the Chain Rule we can successively
differentiate ϕ at least m times as follows
1) ϕ′(t) = F ′(a+ t·e)(e),
2) ϕ′′(t) =

(
F ′′(a+ t·e)(e)

)
(e) = F ′′(a+ t·e)?e2,

...
k) ϕ(k)(t) = F (k)(a+ t·e)?ek, k = 1, 2, . . . ,m.
Then Lemma 4.14 and the definition of F imply that ϕ(k)(0) = 0 for k = 0, . . . ,m.
Now we apply Lemma 4.60 to ϕ and find a number u(t) ∈ [0, t[, 0 ≤ t < ρ, such
that

(35) F (a+ t·e) = ϕ(t) =
1
m!
·ϕ(m)

(
u(t)

)
tm, 0 ≤ t < ρ.

Now ϕ(m)
(
u(t)

)
= F (m)(a+u(t)·e)?em. We set τ = ‖x− a‖ > 0; then x = a+ τ ·e

and note that from (89) and 0 < u(τ) < τ = ‖x − a‖ < δ we estimate ‖r(x)‖ =
‖x− a‖−m·‖F (x)‖ = 1

m!τm ·‖F
(m)(a+ u(τ)·e)?em·τm‖ ≤ 1

m! ·‖F
(m)(x)‖·‖e‖m < ε.

This completes the proof. ut
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From Proposition 4.8 we know the coefficients of the multilinear form f (k)(a) ∈
Homk(E;R). If h = x− a then the number f (k)(a)?hk is given by

(36)
∑

1≤j1,...,jk≤n

(∂j1 · · · ∂jkf)(a1, . . . , an)hj1 · · ·hjk , (nk summands).

However, this is not the last word, since several of these nk summands agree after
Schwarz’ Theorem. Indeed, if in the k-tuple (j1, . . . , jk) the number j ∈ {1, . . . , n}
occurs pj-times, then p1 + . . .+ pn = k und hj1 · · ·hjk = hp1

1 · · ·hpnn . We write

p =(p1, . . . , pn),
|p| =p1 + · · ·+ pn,

hp =hp1
1 · · ·hpnn ,

∂pf =∂p1
1 · · · ∂pnn f, and(

k

p

)
=

k!
p1! · · · pn!

.

The multiplicities in the terms hp occuring in the sum (36) are known from the
expansion (h1 + · · ·+ hn)k =

∑
|p|=k

(
k
p

)
hp. Then (36) can also be written in the

form of
∑
|p|=k

(
k
p

)
(∂pf)(a)hp. If we now abbreviate p1! · · · pn! by p!, then we can

write the Taylor formula (34) in following fashion

(37) f(a+ h) =
∑
|p|≤k

1
p!

(∂pf)(a)hp + ‖h‖kr(h), p = (p1, . . . , pn).

In the form of (37) the Taylor polynomial is accessible to computation as the
partial derivatives ∂pf can be computed directly via successive partial derivation.

Postscript

The idea of higher derivatives is more complicated in the calculus of several variable
than it was in the case of one variable: In Analysis I passing to higher derivatives
was just “more of the same.” The one major result that arises from the existence
of higher derivatives is Taylor’s Theorem. This remains true in the case of several
variables, but the technical complications are substantially higher here.

It is perhaps a relief in the direction of most applications that the essential
applications work with a Taylor formula of degree 2, and here the complications
are moderate. This is why we treat this case separately, leaving the instructor a
choice to skip across the general degree n-version of Taylor’s Theorem.

Moreover, the most crucial theorem in this area arises when we consider second
derivatives: The Theorem of H. A. Schwarz greatly simplifies the information
contained in the second derivative of a level function f :X → R where X is usually
an open subset of Rn. The “second derivative” f ′′(x) is a bilinear map whose
coefficients form a matrix, the Hesse matrix H(x), and according to Schwarz’
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Theorem this matrix is symmetric, and the second derivative is a quadratic form.
All of this works under the hypothesis that that second partial derivatives are
continuous. This allows us to apply all the information provided by linear algebra
on real quadratic forms, and this in turn says that with a very good approximation,
in the vicinity of a point a level function behaves like a quadratic functions which
is of particular interest in a critical point at which the gradient vanishes.

Deep down Schwarz’ Theorem has what in topology one would call a “homolog-
ical” flavor: Our proof shows that it amounts to tracking the values of a function
along the boundary of a very small rectangle (or paralellogram) with the result
“zero”; actually we went around half-way along one half and then around the
other, equalizing the two.

The higher derivatives of a level function turn out to be multilinear forms. If
one handles the formalism efficiently, the notation of the Taylor Theorem is so
close to that of one variable calculus that it can be easily remembered. However,
in all of this streamlining one should not forget that the simplicity of the notation
conceals considerable technical complications.


