
Chapter 3
Foundations of Differentiability:
Functions of several variables

In this section we shall consider finite dimensional normed vector spaces V and
W . We recall that it will be no essential restriction of generality if we often assume
V = K

n and W = K
m.

In earlier chapters we have frequently used the concept of an inner or interior
point of a subset X of a metric space Y ; since X was almost always an interval in
Y = R, all points with the possible exception of end pints were inner points. We
recall the definition:

Definition 3.1. Let (Y, d) be a metric space. A point a ∈ X ⊆ Y is called an
inner point or an interior point of X if and only if a neighborhood of a in Y is
contained in X. (We recall that a subset U is a neighborhood of a in Y if there is
a number r > 0 such that Ur(a) = {x ∈ Y | d(x, a) < r} is contained in U .) The
set of all inner points is called the interior of X. ut

We observe that X is open if and only if every point of X is an inner point of
X, i.e. if X agrees with its interior.

In the main definition for this chapter we formulate the differentiability of
functions f :X → M for X ⊆ V and M ⊆ W ; it follows exactly the lead of
the first definition of Chapter 4 of Analysis I. But the more familiar definition of
differentiability via condition 4.7(ii) in the case of one variable must fail here in
the case of several variable because we cannot form a quotient of two vectors.

Definition of Differentiability

Definition 3.2. Let V and W be two finite dimensional normed vector spaces.
A function f :X → M , X ⊆ V , M ⊆ W is called differentiable in an inner point
a of X if there is a linear function L:V →W and a function r:X →W such that
the following conditions hold:
(i) f(x) = f(a) + L(x− a) + r(x) and
(ii) limx→a

x6=a
‖x− a‖−1·r(x) = 0

This is equivalent with the existence of a linear function L such that
(iii) limx→a

x6=a
1

‖x−a‖ ·‖f(x)− f(a)− L(x− a)‖ = 0.
We say that f is differentiable, if X is open and f is differentiable in all points

of X. ut
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Notice that A(x) = f(a)+L(x−a) = Lx+(f(a)−La) defines an affine function,
and that f(x) = A(x) plus a remainder function f −A which is very small near a
if f is differentiable at a. These circumstances should allow us to reduce various
local properties of f to those of A. For instance it is not unreasonable to surmise
that, locally, f is invertible if A is invertible and that is the case if L is invertible;
and for this we have a very effective test via the determinant detL.

If f : I → W is a curve in the finite dimensional normed vector space (see 2.1)
then Definitions 2.2 and 3.1 are easily seen to be compatible in view of the fact
that each linear map L:R→ W is given by a unique vector v ∈ W via L(t) = t·v
so that v 7→ L:W → Hom(R,W ) is a linear bijection.

Recall that a Banach space is a normed vector space in which every Cuachy
sequence converges. We notice that Definition 3.2 can be straightforwardly gener-
alized to the case of two Banach spaces V and W with the only proviso that the
linear map L is postulated to be continuous, which in the infinite dimensional case
is not automatic.

Remark 3.3. If f is differentiable in a, then the linear map L is uniquely deter-
mined.

Proof . We indicated the proof as a variant of the proof of 4.2. Indeed, for a nonzero
vector v, set rad v = ‖v‖−1·v; then rad v is a unit vector, and v = ‖v‖· rad v.
Assume now that f(x) = f(a) +L1(x−a) + r1(x) = f(a) +L2(x−a) + r2(x) such
that ‖x− a‖−1·r1(x)→ 0 and ‖x− a‖−1·r2(x)→ 0 for x→ a. We conclude that

(∗)
(L1 − L2)

(
rad(x− a)

)
= (L1 − L2)

(
‖x− a‖−1·(x− a)

)
= ‖x− a‖−1·(r2 − r1)(x)→ 0 for x→ a.

Let e be an arbitrary unit vector in V ; since a is an inner point of X, there is a
δ > 0 such that 0 < t < δ implies x = a + t·e ∈ X. Then rad(x − a) = e and
‖x−a‖−1·(r2− r1)(x) = t−1(r2− r1)(a+ t·e)→ 0 for t→ 0. Therefore (∗) implies
(L1 − L2)(e) = 0 for all unit vectors e. Thus L1 = L2. ut

The proof works even if a is a boundary point of X, provided there is a basis e1, . . . , en of

unit vectors of V and a δ > 0 such that a + t·ek ∈ X for k = 1, . . . , n and 0 < t < δ. But a

condition close to this one will be necessary because of the following example: Let X = {(x, y) ∈
R

2 : x < 1⇒y = 0} and a = (0, 0). Then the zero function f :X → R is differentiable in a and

each of the infinitely many linear functions L with L(x, y) = cy, c ∈ R satisfy the condition of

differentiability of f in a with r = 0 even though a is an accumulation point of X.

Definition 3.4. The uniquely determined linear map L of Definition 3.2 is called
the derivative of f in a and is denoted by dfa, or df(a), or Daf , or f ′(a).

It is of paramount importance to remember always that Daf (or f ′(a))
is a linear map V →W , that is, an element of Hom(V,W ).
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Notation. Assume that V and W are finite dimensional normed vector spaces.
Let X be an open subset of V . Then a function ω:X → Hom(V,W ) is called a
W -valued differential form. If W = R, one omits the adjective “W -valued” and
speaks of a differential form or also as a Pfaffian form. If now f :X → Y ⊆W is a
differentiable function, then df :X → Hom(V,W ) (recall df(x) = f ′(x)) is in fact
a W -valued differential form. It is in this context that the notation df(x) is the
preferred notation for the derivative of f at x ∈ X.

If V = K
n and W = K

m then the elements of Hom(V,W ) may be identified
canonically with m× n matrices. After such an identification the derivative Daf
is a matrix, and we will have to determine its coefficients.

Even in the case of the more special situation V = W = K, the derivative Df

is a linear map, but in the case of one dimension one is not consciously aware of
this fact since the linear maps K→ K may be identified with 1× 1-matrices, that
is, with elements of K.� Students tend to be confused about the significance of the derivative f ′(a)

of f at a. This is a function f ′(a):V → W . That is, if v ∈ V then
f ′(a)(v) ∈W . If X is open and f differentiable on X, then f ′ is a function f ′:X →
Hom(V,W ) which associates with each point a ∈ X a linear map f ′(a):V → W .
In terms of the terminology of differential forms, f ′ is in fact a differential form.

Remark 3.5. If a function f is differentiable in a, then it is continuous in a.

Proof . Exercise. ut

Exercise E3.1. Prove Remark 3.5. ut

The converse implication already fails in one variable.

Proposition 3.6. An affine function x 7→ Lx + v:V → W is differentiable and
has the derivative L.

Proof . Exercise. ut

Exercise E3.2. Prove 3.5.

Rules of differentiation: The Sum Rule
We hasten to secure the rules of differentiation which we know from the one di-
mensional case.

Proposition 3.6. (Rules for sums and scalar products) If f, g:X → R
m, X ⊆ Rn

are functions and if a is an inner point of X, and if r ∈ R is a number, then
the differentiability of f and g in a implies that of f + g and r·f . Moreover,
Da(f + g) = Daf +Dag and Da(r·f) = r·Dafa. (Equivalent formulation:

(f + g)′(a) = f ′(a) + g′(a) and (r·f)′(a) = r·f ′(a).).
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Proof . Exercise. ut

Exercise E3.3. Prove Proposition 3.6. ut

As a consequence, the set Da(X) ⊆ WX of a functions X → W which are
differentiable in a form a vector space, and the function Da:Da → Hom(V,W ) is
a linear map.

Rules of differentiation: The Chain Rule
The Chain Rule remains the most important single differentiation rule in the
general context.

Chain Rule

Theorem 3.7. Assume that U , V and W are finite dimensional vector spaces,
X ⊆ U , Y ⊆ V and assume that g:X → Y and f :Y → W functions such
that Dag exists in the inner point a ∈ X and that Dbf exists in the inner point
b

def= g(a) ∈ Y . Then the composition f ◦ g:X →M is differentiable in a and

(1) Da(f ◦ g) = (Dbf)(Dag) = (Dg(a)f)(Dag).

Equivalent notation:

(2) (f ◦ g)′(a) = f ′
(
g(a))g′(a).

Proof . The proof of Theorem 4.15 was deliberately organized in such a fashion
that it painlessly applies to the present situation. ut

Exercise E3.4. Rewrite the proof of 4.15 In Analysis I, being conscious of the
present context, properly replacing absolute values by the appropriate norms.

If X ⊆ U and Y ⊆ V and ϕ:X → Hom(V,W ) and ψ:X → Hom(U, V ), let us
write (ϕψ)(a) = ϕ(a) ◦ ψ(a):U →W .
Corollary. If X ⊆ U and Y ⊆ V are open subsets and f and g are differentiable,
then, using the notation we just introduced, we can summarize the Chain Rule also
in the form

(∗) (f ◦ g)′ = (f ′ ◦ g)g′. ut

Exercise E3.5. Verify that (∗) is an acceptable abbreviation. Note

(f ◦ g)′:X → Hom(U,W ),
g′:X → Hom(U, V ),

f ′ ◦ g:X → Hom(V,W ).� For an understanding of the Chain Rule we alert the student again to the
fact that Dag and Dbf , b = g(a), are linear maps and that the juxtaposi-

tion (Dbf)(Dag) of linear maps denotes their composition which could have been
denoted by (Dbf) ◦ (Dag).
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In a computational vein, if U = K
p, V = K

n, and W = K
m then the linear

maps Dag and Dbf “are” n×p–, respectively, m×n–matrices so that (Dbf)(Dag)
“is” an m× p matrix product.

Or, again reformulated in other words:
i) the affine approximation of g near a is x 7→ g(a) + (Dag)(x− a),
ii) the affine approximation of f near b = g(a) is y 7→ f(b) + (Dbf)(y − b) =

f
(
g(a)

)
+
(
Dg(a)f

)(
y − g(a)

)
,

iii) the affine approximation of f ◦ g near a is f
(
g(a)

)
+Da(f ◦ g)(x− a).

iv) The composition of the affine maps in i) and ii) is

x 7→f
(
g(a)

)
+ (Dg(a)f)

(
g(a) + (Dag)(x− a)− g(a)

)
=f
(
g(a)

)
+ (Dg(a)f)(Dag)(x− a).

Therefore we have the following reformulation of the Chain Rule:
The affine approximation of a composition of differentiable functions is the com-
position of their affine approximations.

The General Mean Value Theorem
As a first simple application of the Chain Rule we formulate the final version of the
Mean Value Theorem for vector valued functions of several variables. The decisive
work was done in Chapter 2 leading us to the key Lemma 2.10. In particular we
recall from 2.8ff. the concept of geodesic distance d(x, y) of two points x, y of a
connected open subset of a normed vector space.

Mean Value Theorem

Theorem 3.8. Let X be a connected open subset of finite dimensional normed
vector space V . Let f :X → W be a differentiable function with values in a finite
dimensional normed vector space W and assume that the function x 7→ f ′(x):X →
Hom(V,W ) is bounded so that ‖f ′‖ = sup{‖f ′(x)‖ : x ∈ X} is well defined. Then

(∗) (∀x, y ∈ X) ‖f(x)− f(y)‖ ≤ ‖f ′‖·d(x, y).

If x and y are connected in X by a straight line segment, then

(∗∗) ‖f(x)− f(y)‖ ≤ ‖f ′‖·‖x− y‖.

Proof . Let γ: [a, b]→ X be a piecewise differentiable curve. Then from the Chain
Rule we compute that (f ◦ γ)′(t) = f ′(x)

(
γ′(t)

)
. In particular, for all such γ and

all t in the domain of γ we get ‖(f ◦ γ)′(t)‖ ≤ ‖f ′
(
γ′(t)

)
‖·‖γ′(t)‖ ≤ ‖f ′‖·‖γ′(t)‖.

Now Lemma 2.10 applies and immediately yields the assertion of the theorem. ut

We should remark, that this theorem hold for not necessarily finite dimensional
Banach spaces V and W as well.

Theorem 3.8 allows us at once to conclude:
If two (vector valued) functions (of several variables) have the same derivatives on
an open connected set then they differ on this set by at most a constant.
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Rules of differentiation: The Product Rule
The product rule plays a distinctly smaller role here than it does in the one-variable
situation. We discuss it anyhow to maintain the parallelity of our proceeding with
the elementary situation. In a first reading, this subsection may be skipped. The
first thing we have to realize is that we do not have a given multiplication of
vectors. This requires a systematic approach to multiplications as we see if we
analyze the general situation as follows:

Assume that we are given functions f :X → W1, X ⊆ V1 and g:Y → W2,
Y ⊆ V1, both of which are differentiable in the inner points a of X, respectively,
b of Y . Moreover, let B:W1 ×W2 → U be a bilinear function, that is, a function
which is linear in each of its arguments if the other one is held fixed. We would
like to make statement about the differentiability of the function

(x, y) 7→ B
(
f(x), g(y)

)
: X × Y → U in (a, b) ∈ X × Y.

This function is the composition of the functions f × g : X × Y → W1 × W2,
(f × g)(x, y) =

(
f(x), g(y)

)
, and, secondly, the function B. The function f × g is

differentiable in (a, b) and has the derivative Daf×Dbg where (Daf×Dbg)(u, v) =(
Daf(u), Dbg(v)

)
. By the Chain Rule, the function B◦(f×g) now is differentiable

in (a, b) if B is differentiable in
(
f(a), g(b)

)
. Therefore we have to investigate the

differentiabilityof bilinear functions. We begin by a Lemma, that belongs largely
to linear algebra:
Lemma. Let W1, W2 and U be finite dimensional normed vector spaces and
B:W1×W2 → U be a bilinear map. Then there is a a unique smallest real number
‖B‖ such that

(3) (∀w1 ∈W1, w2 ∈W2) ‖B(w1, w2)‖U ≤ ‖B‖·‖w1‖W1 ·‖w2‖W2 .

Proof . Exercise. ut

Exercise E3.6. Prove the preceding lemma.
[Hint. Pick a basis e1, . . . , em of W1 and a basis f1, . . . , fnn of W2 and define
the vectors bj,k ∈ U by bj,k = B(ej , fk), j = 1, . . . ,m, k = 1, . . . , n. Write
w1 =

∑m
j=1 xj ·ej and w2 =

∑n
k=1 yk·fk. As usual set ‖x‖∞ = max{|x1|, . . . , |xm|},

similarly for ‖y‖∞ = max{|y1|, . . . , |yn|}, and define β = ‖
∑

j=1,...,m
k=1,...,n

bjk‖U . Then

‖B(w1, w2)‖U = ‖
∑

j=1,...,m
k=1,...,n

xjyk·bjk‖U ≤ ‖x‖∞·‖y‖∞‖. By 1.27,there are num-

bers c1 and c2 such that ‖wp‖∞cp‖wp‖Wp
, p = 1, 2. Thus ‖B(w1, w2)‖U ≤

C·‖w1‖W1 ·‖w2‖W2 . Set ‖B‖ = sup{‖B(w1, w2)‖U : ‖w1‖W1 ≤ 1, ‖w2‖W2 ≤ 1.
Complete the proof.]

Theorem 3.9. (i) A bilinear map B:W1×W2 → U is differentiable in every point
(x, y) and has the derivative D(x,y)B given by D(x,y)B(u, v) = B(x, v) +B(u, y).

(ii) For differentiabl functions f and g as in the discussion preceding the theo-
rem, the composite function F = B ◦ (f × g) is differentiable in (a, b) and has the
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derivative D(a,b)f = (D(
f(a),g(b)

)B)(Daf ×Dbg) which is given by

(D(a,b)F )(x, y) = B
(
Daf(x), g(b)

)
+B

(
f(a), Dbg(y)

)
.

Proof . (i) Set L(u, v) = B(u, y) + B(x, v). Then B(x + u, y + v) = B(x, y) +
B(x, v)+B(u, y)+B(u, v) = B(x, y)+L(u, v)+B(u, v). By the preceding lemma,

(∗) ‖B(u, v)‖U ≤ ‖B‖·‖u‖W1 ·‖v‖W2 .

Now assume that (u, v) 6= (0, 0), say u 6= 0, the case v 6= 0 is similar. Con-
sider the projection P :W1 ×W2 → W1, P (u, v) = u. Then ‖u‖ = ‖P (u, v)‖ ≤
‖P‖·‖(u, v)‖W1×W2 with the operator norm ‖P‖ of P (see 6.33) and with the prod-
uct norm ‖(u, v)‖W1×W2 = max{‖u‖W1 , ‖v‖W2} (cf. 3.49(iii) where this definition
was used for a product of metric spaces). Since P is not the zero operator, ‖P‖ 6= 0
and thus

(∗∗) ‖(u, v)‖W1×W2 ≥ ‖P‖−1·‖u‖W1 .

Setting ‖B‖·‖P‖ = C, from (∗) and (∗∗) we obtain

(†) ‖B(u, v)‖U
‖(u, v)‖W1×W2

≤ ‖B‖·‖u‖W1 ·‖v‖W2

‖P‖−1·‖u‖W1

= C·‖v‖W1 ≤ C·‖(u, v)‖W1×W2 .

Since this tends to 0 for (u, v)→ (0, 0) the theorem follows from Definition 3.2.
(ii) This is an immediate consequence of (i) and the Chain Rule. ut

If we take W1 = W2 = U = K and consider functions of one variable combined
with the bilinear map B:K × K → K defined by B(x, y) = xy then we find
F (x, y) = f(x)g(y) and D(a,b)F (x, y) = f ′(a)g(b)x+ f(a)g′(b)y. The old product
rule follows if we invoke the ϕ:K → K, ϕ(x) = F (x, x). Then ϕ = F ◦ δ where
δ:K→ K×K is the diagonal map defined by δ(x) = (x, x), a linear function. Thus
ϕ′ = F ′ ◦δ, and we finally get ϕ′(a) = (fg)′(a) = f ′(a)g(a)+f(a)g′(a). This same
argument can be carried out more generally if m = n and X = Y . Again we set
δ(x) = (x, x) and observe δ′ = δ. This yields the consequence

Corollary 3.10. Assume that f :X → W1 and g:X → W2 are functions on an
open set X of some finite dimensional vector space into finite dimensional vector
spaces and assume that f and g are differentiable in the inner point a of X; assume
further that B:Rp×Rq → U is a bilinear map into some finite dimensional vector
space, then the function x 7→ B

(
f(x), g(x)

)
is differentiable and has the derivative

x 7→ B
(
(Daf)(x), g(a)

)
+B

(
f(a), (Dag)(x)

)
. ut

Directional derivatives and partial derivatives
A simple application of the chain rule arises from a specialisation of the general
case. Let f :X → M ⊆ W , X ⊆ V be a function and let a be an inner point
a of X. Let e ∈ V be an arbitrary vector. Since a is an inner point, there is a
δ > 0 such that |t| ≤ δ implies a+ t·e ∈ X. We consider the curve γ: [−δ, δ]→W ,
γ(t) = f(a+ t·e) in W .
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Definition 3.11. If γ is differentiable at 0, then the derivative D0γ of γ at 0 is a
vector ∂a;ef in W defined by

∂a;ef = lim
t→0
t6=0

1
t

(
f(a+ t·e)− f(a)

)
=

d

dt
f(a+ t·e)

∣∣∣∣
t=0

= D0γ.

The vector ∂a;e is called the directional derivative of f at a in the direction of
e ∈ V . ut

The symbol ∂ is spoken “partial”, and we shall presently see why; a German
abbreviation is ,,del“, apparently a transmogrification of “delta”.

If a notation is used it must indicate the place a at which it is taken and the
direction e into which “it points.” The directional derivative is defined also for
the “zero direction” e = 0 but it is the the zero vector and is not particularly
interesting. Most often V is a normed space and e is a unit vector, i.e. ‖e‖ = 1.

A special situation arises if V = R
n. Then we let e be one of the standard

basis vectors
e1 = (1, 0, . . . , 0, . . . , 0),
e2 = (0, 1, . . . , 0, . . . , 0),
...
ek = (0, 0, . . . , 1, . . . , 0),
...
en = (0, 0, . . . , 0, . . . , 1);

where in the row ek the element 1 is in the k-th position. These vectors yield n
directional derivatives ∂a;ekf which we abbreviate (∂kf)(a); thus (∂kf)(a) =

lim
t→0
t6=0

1
t

(
f(a1, . . . , ak−1, ak + t, ak+1, . . . , an)− f(a1, . . . , ak−1, ak, ak+1, . . . , an)

)
,

k = 1, . . . , n. Each of these is a vector in W .

Definition 3.12. If W = R, then the real number (∂kf)(a), k = 1, . . . , n is called
the k-th partial derivative of the function f :X → R at the inner point a ∈ X.
Various notations are used:

∂f

∂xk

∣∣∣∣
x=a

or
∂f(x)
∂xk

∣∣∣∣
x=a

or
∂f

∂xk
(a) or (∂kf)(a). ut

If V = R
n and W = R

m, then for each x = (x1, . . . , xn) ∈ X the vector
f(x) ∈W is of the form

f(x) =


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fm(x1, . . . , xn)

 ,

and thus f is really an m-tuple of scalar valued functions fj :X → R. If f has all
directional derivatives (∂kf)(a), k = 1, . . . , n, then we obtain a full m× n matrix
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of mn partial derivatives

(
∂kfj)(a)

)
j=1,...,m
k=1,...,n

=


∂f1
∂x1

∣∣∣
x=a

. . . ∂f1
∂xn

∣∣∣
x=a

...
. . .

...
∂fm
∂x1

∣∣∣
x=a

. . . ∂fm
∂xn

∣∣∣
x=a


What do all these partial derivatives have to do with the possible differentia-

bility of f at a in the sense of Definition 3.2?

Proposition 3.13. (i) Assume that the function f :X → M ⊆ W , X ⊆ V for
finite dimensional normed vector spaces V and W is differentiable at the inner
point a of X, and that e is any vector in V . Then the directional derivative of f
at a in the direction of e exists and is equal to

(4) ∂a;ef = (Daf)(e) = f ′(a)(e).

(ii) Now let V = K
n and W = K

m. Then the linear map
Daf = f ′(a):Kn → K

m has the matrix

(5) (ajk) j=1,...,m
k=1,...,n

, ajk = (∂kfj)(a) =
∂fj
∂xk

∣∣∣∣
x=a

.

Proof . (i) We define γ(t) = f(a + t·e) for all t ∈ [−δ, δ] for a sufficiently small δ
and have ∂a;ef = dγ

dt

∣∣∣
t=0

. Set g(t) = a + t·e, g: [−δ, δ] → W ; then g′(0)(t) = t·e
for all t ∈ R and γ = f ◦ g. By the Chain Rule 3.7, for all t ∈ R we have
t·∂a;ef = D0(f ◦ g)(t) = Dg(0)f ◦D0g(t) = Daf

(
g′(0)(t)

)
= Daf(t·e) = t·Daf(e).

It follows that ∂a;ef = Daf(e).
(ii) Here we take e = ek and find (∂kf)(a) = Da(ek) for all k = 1, . . . , n. We

know from the definition of the matrix of Daf that its k-th column is precisely
the image (Daf)(ek) written as a column. But (∂kf)(a) =

lim
t→0
t6=0

1
t

(
f(a+ t·ek)− f(a)

)
= lim

t→0
t6=0

1
t
·

 f1(a+ t·ek)− f1(a)
...

fm(a+ t·ek)− fm(a)

 =

 (∂kf1)(a)
...

(∂kfm)(a)

 .

Taken together, these two observations prove the claim. ut

Let us stress this point again: In order to compute a partial derivative of a func-
tion f :X → R, X ⊆ Kn with respect to xk at the point (a1, . . . , an) one fixes all
coordinates except for the k-th, putting them equal to a1, . . . , ak−1, ak+1, . . . , an,
and one considers the one variable function x 7→ f(a1, . . . , ak−1, x, ak+1, . . . , an);
now one differentiates this one-variable function it at the point ak as in Chapter 4 of
Analysis I; the result is (∂kf)(a). Once more: If we set ϕ(t) = f(a1, . . . , t, . . . , an)
then (∂kf)(a) = ϕ′(ak).
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Now the derivative Daf = f ′(a) of a function f is computationally accessible,
since we can compute the matrix coefficients immediately as partial derivatives
of the coefficient functions fj , and as we have observed, partial derivatives are
computed as derivatives of one variable functions.

We have concluded, in particular, that the existence of a derivative Daf implies
the existence of all directional derivatives and, in particular, all partial derivatives
(∂kfj)(a). The converse however, is false; we want to illustrate that by construc-
tung an example of a function f :R2 → R, a = (0, 0) which is not differentiable
at (0, 0) but all directional derivatives exist at (0, 0), so certainly the two partial
derivatives exist.

In order to understand better the construction of such examples let us return
to the polar coordinate function P :R × [0,∞[→ R

2, P (t, r) = (r cos t, r sin t) of
5.40(42) whose domain and codomain we have now extended with the result that
P is no longer bijective. Now assume that a function f :R2 → R is given to
us. We obtain a new function F = f ◦ P : R × [0,∞[→ R with the property
F (t, 0) = F (0, 0) for all t ∈ R and F (t, r) = F (t + 2πn, r), n ∈ Z, t ∈ R, 0 ≤ r.
Conversely, every function F with these properties can be written in the form
F = f ◦ P with a uniquely determined function f :R2 → R.

Exercise E3.7. Prove the existence of f as asserted.
[Hint. Set f(0, 0) = F (0, 0), and recall 5.40(42) which yields a function
P−1:R2 \ {(0, 0)} → ]−π, π]× ]0,∞[. Then use the given properties of F .]

In this way we wish to construct the function of our example we have an-
nounced. Indeed, we take functions g:R→ R and h: [0,∞[→ R such that −g(t) =
g(t+ π) and h(0) = 0 for t ∈ R. This implies, in particular, g(t+ 2π) = g(t). The
we define F (t, r) = h(r)g(t) and obtain a uniquely determined function f :R2 → R

such that f(r cos t, r sin t) = h(r)g(t) and f(0, 0) = 0. We assume that the one-
sided derivative h′(0) of h in 0 exists and is different from 0. For e = (cos t, sin t)
we set ϕe(r) = f(r·e) and assert that ϕ′e(0) = d

drf(r·e)
∣∣
r=0

= h′(0)g(t), because

f(r·e) =
{
h(r)g(t) for r > 0,
h(−r)g(t+ π) for r < 0.

The derivative at r = 0 on the right side of the function r 7→ f(r·e) is h′(0)g(t), and
its derivative on the left side is (−1)h′(0)g(t + π) = h′(0)g(t) because of −g(t) =
g(t + π). Thus the asserted directional derivative exists and equals h′(0)g(t). In
particular, (∂f/∂x)(x,y)=(0,0) = h′(0)g(0) and (∂f/∂y)(x,y)=(0,0) = h′(0)g(π/2).
The function f is continuous at (0, 0), since h′(0) exists. If it is also differentiable
in (0, 0), then the derivative D(0,0)f has to be equal to

(
h′(0)g(0), h′(0)g(π/2)

)
=

h′(0)(g(0), g(π/2)). Now one has great freedom in the selection of g. For instance,
we can choose g so that g(0) = g(π/2) = 0, but that g is not identically 0. Then
the function f has directional derivatives in all directions, but is not differentiable
in (0, 0).
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Exercise E3.8. (i) Consider the following function

f(x, y) =
{
xy2/(x2 + y2) for (x, y) 6= (0, 0),
0 otherwise.

Show that this is a continuous function having all directional derivatives every-
where and that it is not differentiable in (0, 0).
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Figure 3.1

(ii) Define a closed subset S ⊆ R2 of the plane by

S = {(x, y) ∈ R2 : y ≤ 0 or y ≥ x2},

and let f :R2 → R denote the characteristic function of S, that is, f(x, y) = 1 if
(x, y) ∈ S and = 0 elswhere. Show that this function has all directional derivatives
in (0, 0) but is discontinuous at (0, 0). The directional derivatives all vanish at
(0, 0).
[Hint. (i) Apply our previous discussion with h(r) = r, g(t) = (cos t)(sin2 t). (ii)
Let e be a unit vector in R2. Show that there is a δ > 0 (depending on e) such
that |t| < δ implies t·e ∈ S and thus f(t·e) = 0.]

This situation may look a bit awkward. But it changes as soon as the partial
derivatives exist in an entire neighborhood of the point a and are continuous in a.
Indeed we have the following theorem:

Theorem 3.14. Let f :X → R
m, X ⊆ Rn be a function and a an inner point

of X. Assume that all partial derivatives exist on a neighborhood Ur(a) of a
and are continuous in a. Then f is differentiable in a and Daf has the matrix(
(∂kfj)(a)

)
j=1,...,m
k=1,...,n

.

Proof . First we note that f is differentiable in a as soon as all the coefficient
functions fj :X → R are differentiable in a: Indeed let ej , j = 1, . . . ,m denote
the standard basis vectors of the range space Rm; then f(x) = f1(x)·e1 + · · · +
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fm(x)·em =
(
f1(x), . . . , fn(x)

)
. We may therefore assume without restricting the

generality that m = 1. We shall do this in the following. We also fix a norm, well
aware of the fact that it is immaterial which one we fix.

We consider x ∈ Ur(a) and notice

f(x)− f(a) = f(x1, a2, . . . , an)− f(a1, . . . , an)
+ f(x1, x2, . . . , an)− f(x1, a2, . . . , an)
...
+ f(x1, x2, . . . , xn)− f(x1, x2, . . . , xn−1, an).

Figure 3.2

Since the partial derivatives pj , pj(u) def= ∂f/∂xj |x=u of f exist on Ur(a), the
Mean Value Theorem 4.29 yields numbers tj between aj and xj such that

f(x1, . . . , xk−1, xk, ak+1, . . . , an)− f(x1, . . . , xk−1, ak, ak+1, . . . , an) =
pj(x1, . . . , xk−1, tk, ak+1, . . . , an)(xk − ak), k = 0, . . . , n.

Then

f(x) = f(a) +
n∑
j=1

pj(a)(xj − aj) + r(x)

where

r(x) =
n∑
j=1

(
pj(a(k))− pj(a)

)
(xj − aj),

and
a(k) = (x1, . . . , xk−1, tk, ak+1, . . . , an), a = (a1, . . . , an).

We will finish the proof by showing that ‖x − a‖−1r(x) → 0 for x → a with
x 6= a in Ur(a). Now we notice that a(k) tends to a if x = (x1, . . . , xn) tends to a,
because tk is between ak and xk. Since the partial derivatives pj are continuous
at a, the function pj(a(k)) − pj(a) tends to 0 as x tends to a. Since all norms on
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R
n are equivalent, there is a number C > 0 such that C·‖x − a‖ ≥ ‖x − a‖∞ =

max` |x` − a`|. Now we have ‖x − a‖−1|xj − aj | ≤ C‖x − a‖−1
∞ ·|xj − aj | ≤ C for

all j = 1, . . . , n, and then it follows that ‖x− a‖−1r(x)→ 0 for x→ a with x 6= a
in Ur(a). But this is what we had to show. ut

It is worth emphasizing that from modest assumptions on partial derivatives
which amounts to information on n directions only (if the domain is contained in
n-space) we derive the strongest possible differentiability property, namely, differ-
entiability itself.

Scalar valued functions on higher dimensional domains
In the general theory we considered functions from (open subsets of) Rn to Rm.
Several special situations arise:
(a) n = 1 and m arbitrary. This the case of curves which we considered in Chapter

2 above.
(b) m = 1 and n arbitrary. We encountered this in form of the coefficient functions

fj above; this special case captures most of the general features of the theory.
(c) m = n. This arises whenever we consider, for instance, self-maps of some

open domain in Rn. Issues of (local) invertibility of functions take place in
this setting as we shall see below.

But now we turn the special case m = 1, n arbitrary which is opposite to
that of curves. In other words, we consider functions f :X → R with X ⊆ E,
E = R

n. The graph G = {
(
x, f(x)

)
∈ E × R : x ∈ X} of such a function may

be visualized as a surface in n + 1 dimensional space E × R projecting onto the
base surface X × {0} ∼= X with f(x) ∈ R denoting the “elevation,” “height,” or
“level” of the point

(
x, f(x)

)
above the base plane. Therefore, such a function is

sometimes called a level function or, in German, a Höhenfunktion. (See Figures
3.1 above and 3.3 below.) If a is an inner point of X, then f is differentiable in a,
if there is a linear map Daf = dfa = f ′(a):E → R and a function r:X → R with
|r(x)|/‖x− a‖ → 0 for x→ a, x 6= a such that

f(x) = f(a) + f ′(a)(x− a) + r(x).

By Proposition 3.13(5) the matrix of the linear map Daf is

matrix of Daf =
(
(∂1f)(a), . . . , (∂nf)(a)

)
=
(
∂f(x)
∂x1

∣∣∣∣
x=a

, . . . ,
∂f(x)
∂xn

∣∣∣∣
x=a

)
.

The derivative df(a) = Daf :E → R is a linear form. However if we consider E as
a real Hilbert space with the inner product (x | u) =

∑n
j=1 xjuj there we have a

unique vector g ∈ E such that (Daf)(v) = (v|g) = (g|v). This calls for a name.

Definition 3.15. The unique vector g in the Hilbert space E for which
(∀v ∈ E) df(a)(v) = (Daf)(v) = (g|v) is called the gradient of f at a and is written
grada f , or (grad f)(a), or ∇af , or ∇f |x=a. ut
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Figure 3.3

Gradient and directional derivative
In the n-tuple space E = R

n we have

grada f =
(
(∂1f)(a), . . . , (∂nf)(a)

)
∈ Rn.

With this notation, for a function f which is differentiable at a, we get the repre-
sentation

f(x) = f(a) +
(

grada f |(x− a)
)

+ r(x) such that lim
x→a
x6=a
|r(x)|/|x− a| = 0.

The affine approximation x 7→ f(a) + (grada f | x − a) describes the behavior
of f up to a very small error near a. In particular, we recall from 1.23(6) that

(grada f |x− a) =‖ grada f‖·‖x− a‖ cosw(grada f, x− a)),
w(grada f, x− a) =nonoriented angle between grada f and x− a.

(Cf. 1.21. The angle is undefined if grada f = 0!)
We continue to consider a function f :X → R which is differentiable at the inner

point a ∈ X ⊆ E. From Definition 3.11 we recall the concept of the directional
derivative ∂a;ef = df(a+t·e)

dt

∣∣∣
t=0

of f at a in the direction of e ∈ E. In Proposition

3.13(4) we observed that ∂a;ef = (Daf)(e). In the present situation this means
that the directional derivative can be computed with the gradient:

Remark 3.16. For all e ∈ E we have

∂a;ef = (grada f |e).
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In particular, if e is a unit vector then, assuming that the gradient does not
vanish and using the nonoriented angle w(u, v) between two nonzero vectors (see
Definition 1.21), we can also write

(6) ∂a;ef = ‖ grada f‖ cosw(grada f, e).
ut

If e = ek is the k-th standard basis vector of Rn, then the directional derivative
in the direction ek is exactly (grada f |ek) = ∂f(x)

∂xk

∣∣∣
x=a

the k-th partial derivative
of f .

From (6) is is clear that (in case grada f 6= 0) the directional derivative in
the direction of e is maximal iff cosw(grada f, e) = 1 iff w(grada f, e) = 0 iff
e = ‖ grada f‖−1· grada f . In other words, the vector grada f points into the
direction of the largest ascent of the function f , and its length is the directional
derivative in that direction, that is, the rate of change in this direction. If on
the other hand we select a unit vector which is perpendicular to grada f , then
(grada f | e) = 0, that is, the directional derivative in the direction of e is zero.
Hence the function t 7→ f(a+ t·e) is stationary at t = 0.

Level sets
In order to get an intuitive idea of the function f :X → R we consider, for each
y ∈ R the inverse images f−1(y) = {x ∈ X : f(x) = y}. In our present context
one speaks of level sets in X. For example, if n = 2, then the graph of f in X ×R
is a surface in three-space lying above the planar region X, and the level sets are,
as a rule, at least locally, the range of a curve, and are called level lines (German
Höhenlinien) or level curves known from geographic maps.

The point a itself lies on the level set f−1
(
f(a)

)
= {x ∈ X : f(x) = f(a)}.

Then a point f(x) is on this level set iff (grada f |x − a) = −r(x). Let us define
the affine function α:E → R by α(x) = (grada f |x−a). It is now plausible that in
the case that grada f 6= 0 the level set f−1

(
f(a)

)
is approximated near a by the

level set α−1
(
α(0)

)
, that is by the hyperplane

{x ∈ X : (grada f |x) = (grada f |a)}

which is perpendicular to the gradient grada f and which passes through a. This
makes it also plausible that the level set may be described near a as the graph of a
function; we shall later see the so-called “Implicit Function Theorem” which will
allow us to prove rigorously our plausibility arguments. If grada f 6= 0, then we can
form the unit vector e def= ‖ grada f‖−1· grada f . Thus the directional derivative
∂a;ef of f at a in the direction of e is precisely (grada f |e) = ‖ grada f‖ > 0, and
the function t 7→ f(a+ te), defined for all sufficiently small t as a is an inner point
of the domain X, has the derivative

df(a+ t·e)
dt

∣∣∣∣
t=0

= ∂a;ef = (grada f |e) = ‖ grada f‖.

According to Theorem 4.25 of Analysis I and since a is an inner point of X, there
is a δ > 0 such that 0 < t < δ implies f(a + t·e) > f(a) and that −δ < t < 0
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implies f(a+ t·) < f(a). We conclude that f cannot attain a local extremal value
(Definition 4.26 of Analysis I) at a. We reformulate this as follows:

Proposition 3.17. Let X ⊂ Rn and assume that a is an inner point of X. If the
function f :X → R

n is differentiable at a and attains in this point a local extremal
value, then grada f = 0. ut

Thus local extremal values are to be found at most in the stationary points of
f , that is the points at which the gradient vanishes. Sometimes these points are
also called critical points. However, the function f :R2 → R, f(x, y) = x2− y2 has
at (0, 0) a stationary point, but attains at (0, 0) neither a local minimum nor a
local maximum. In fact, the function t 7→ f(t, 0) attains in 0 a local minimum, the
function t 7→ f(0, t), however, a local maximum. The two functions t 7→ f(t,±t)
are constant. A stationary point with such properties is called a saddle point. The
level lines of this function are the hyperbolas {(x, y) : x2 − y2 = r}, provided that
r 6= 0. We will defer a more thorough analysis of the local behavior of a level
function in a stationary point until we discuss higher derivatives.

Exercise E3.9. Prove the following assertion.
Proposition. Let f :X → R, X ⊆ E = R

n be differentiable in the inner point
a of X. Then the graph of the affine approximation x 7→ f(a) + (grada f |x − a)
of the function f at a is the tangent hyperplane T to the graph of the function f
at the point (a, f(a)). If we identify the vector spaces Rn × R and Rn+1, then the
vector (grada f,−1) ∈ Rn × R = R

n+1 is perpendicular to T .
[Hint. The difference r(x) = f(x)−

(
f(a)+(grada f |x−a)

)
satisfies limx→a

|r(x)|
‖x−a‖ =

0. This justifies the term “tangent hyperplane.” The graph of the affine ap-
proximation is {(x, y) ∈ Rn × R = R

n+1 : y = (grada f |x) + q}, q = f(a) −
(grada f |a). The hyperplane through the orgin which is parallel to it has the
equation

(
(grada f,−1)|(x, y)

)
= 0 with the inner product on Rn+1.]

The Implicit Function Theorem
In this section we consider differentiable functions f :U1 → U2 where U1 and U2

are open subsets of finite dimensional normed vector spaces V and W of the same
dimension. (In fact, all arguments apply to the case of Banach spaces V and W
if we take it for granted that a derivative is defined as a continuous linear map,
which is not guaranteed in infinite dimensions.)

In many of the preceding sections we noted the importance of inverse functions,
notably in the context of differentiable functions of one variable (cf. Proposition
4.18 through Exercise E4.8 in Analysis I). In the context of functions f : I →
J between intervals f has an inverse g: J → I iff for all y ∈ J the equation
y = f(x) has precisely one solution x ∈ I. In the case of a continuous f this
property is equivalent with strict monotonicity. A sufficient condition was that
f had everywhere a positive derivative. The investigation of inverses (at least
locally) in higher dimensions therefore must concentrate on several questions:
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(i) Assume that a differentiable function f :U1 → U2 has an inverse function, is
the inverse function differentiable and what is its derivative?

(ii) When does a given differentiable function f have an inverse function?
These issues are certainly no less important for functions in several variables

than they are for functions of one variable. Indeed at stake is the solvability of
entire systems of equations

y1 = f1(x1, . . . , xn),
...

...
...

ym = fm(x1, . . . , xn),

where the yk are given and we have to solve for the xj .

As first order of business we deal with the differentiability of the inverse function
of a differentiable function in case it does have an inverse.

Thus let U1 ⊆ V and U2 ⊆W open subsets of finite dimensional normed vector
spaces. Let us now assume that two functions f :U1 → U2 und g:U2 → U1 are
inverse functions of each other. Further assume that f is differentiable in a ∈ U .
Then f(x) = f(a)+L(x−a)+r(x) with L = Daf :V →W and the usual remainder
function r. We set b = f(a) and thus a = g(b).

As a first step we shall show that L has to be invertible if g is differentiable
in b. If this is shown then dimV = dimW follows. We have g ◦ f = idU1 and
f ◦ g = idU2 . By the Chain Rule 2.22. this implies idV = id′U1

(a) = Dbg ◦ Daf .
Since Dbg and Daf are linear maps between finite dimensional vector space, this
suffices for Dbg = (Daf)−1.

Now we assume, conversely, that L = Daf is invertible. We set f(x) = f(a) +
L(x − a) + ‖x − a‖·R(x) with R(x) → 0 for x → a. We set y = f(x) and derive
y − b = L(g(y)− g(b)) + ‖g(y)− g(b)‖R

(
g(y)

)
, that is

g(y) = g(b) + L−1(y − b)− ‖g(y)− g(b)‖·L−1R
(
g(y)

)
.

Now we have

‖g(y)− g(b)‖ = ‖y − b‖·‖g(y)− g(b)‖
‖y − b‖

= ‖y − b‖· ‖x− a‖
‖f(x)− f(a)‖

.

Set c = min{‖Lu‖ : ‖u‖ = 1}; since L is invertible, this number is well defined.
Let us consider x so closed to a that ‖R(x)‖ < c

2 . Then for these x we have

‖f(x)− f(a)‖
‖x− a‖

≥
∣∣∣∣‖R(x)‖ −

∥∥∥∥L( x− a
‖x− a‖

)∥∥∥∥ ∣∣∣∣ > c

2
.

Therefore ‖x−a‖
‖f(x)−f(a)‖ stays bounded for x → a. If g is assumed to be continuous

at b, then y → b and x→ a are equivalent. Therefore ‖g(y)−g(b)‖ = ‖y−b‖·B(y)
with a function B:U2 → R which stays bounded for y → b. Thus

g(y) = g(b) + L−1(y − b) + ‖y − b‖·
[
B(y)·L−1R

(
g(y)

)]
.
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It follows that g is differentiable in b and has the derivative L−1. Thus we have
proved the following result:

Proposition 3.18. Assume that U1 ⊆ V und U2 ⊆ W are open sets in finite
dimensional normed vector spaces and that f :U1 → U2 and g:U2 → U1 are inverse
functions of each other. Further assume that f is differentiable in a and g is
continuous in b = f(a). Then the following two statements are equivalent.
(i) g is differentiable in b.
(ii) Daf is invertible.

If these statements hold, then Dbg = Df(a)g = (Daf)−1, and the vector spaces V
and W are necessarily isomorphic. ut

Let us recall that statement (ii) above is equivalent to
(iii) detDaf 6= 0.

Exercise E3.10. Compare Proposition 3.18 with the discussions of the one di-
mensional case in Proposition 4.18 in Analysis I.

The question of the existence of a (local) inverse function is harder, but more
informative and much more fascinating. The result is a standard tool in analysis
in all of its branches.

So let U and V be open subsets of Rn, say, and consider a continuous function
f :U → V . We noted in 3.18 that, in the context of locally invertible differen-
tiable functions it would be absurd to investigate real vector spaces of different
dimensions. We will show that a suitable strong condition of differentiability of
f at a point a ∈ U with an invertible derivative implies that f maps an open
neighborhood of a bijectively and continuously invertibly onto a neighborhood of
f(a). Recall that, conversely, the condition that f maps a sufficiently small open
neighborhood Ur(a) of a point a ∈ U bijectively onto a neighborhood of f(a) in
V does not imply that f is differentiable in a. Indeed 3

√
:R → R is continuous

and bijective but fails to be differentiable at 0. Furthermore, its inverse function
x 7→ x3 is smooth and bijective, but its derivative at 0 is not invertible.

For our purpose we consider an interesting variation of the concept of differen-
tiability of a function at a point.

Definition 3.19. Let V and W be finite dimensional normed spaces. A function
f :X → W with X ⊆ V is called strongly differentiable at an inner point a of X,
if there is a linear map L:V →W and a function R:X ×X →W so that

(7) f(u)− f(v) = L(u− v) + ‖u− v‖·R(u, v) and lim
(u,v)→(a,a)

R(u, v) = 0. ut

Taking v = a we see at once that a function which is strongly differentiable at
a is differentiable. The converse may fail. (See E2.21 below.)

The following theorem clarifies the situation.
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Theorem 3.20. Let V and W be finite dimensional normed vector spaces and X
an open subset of V ; assume that f :X →W is a differentiable function. Then for
a point a ∈ X the following statements are equivalent:

(i) f ′ is continuous at a.
(ii) f is strongly differentiable at a.

Proof . In place of the function f we consider the function F :X → W defined
by F (x) = f(x) − f(a) − f ′(a)(x − a). If we prove the equivalence of (i) and (ii)
for F , then it is also secured for f , since the two functions differ only by an affine
function. For the function F , however, we have

F (a) = 0 and F ′(a) = 0.

We will now show that (i) implies the strong differentiability of F and that (ii)
entails the continuity of F ′ at 0.

(i)⇒(ii): By the continuity of F ′ at a and in view of F ′(a) = 0, for a given
ε > 0 we find a δ > 0 so that w ∈ Uδ(a) implies ‖F ′(w)‖ ≤ ε with the operator
norm (s. 1.32, 1.33). The set Uδ(0) is a ball and thus is convex, i.e. for two points
u, v ∈ Uδ(0) and t ∈ [0, 1] the point w = (1− t).u+ t·v on the straight line segment
S between them satisfies ‖w‖ ≤ (1− t)‖u‖+ t‖v‖ < (1− t)δ + tδ = δ also belongs
to Uδ(0). By the Mean Value Theorem 2.10(∗∗) we have

‖F (v)− F (u)‖ ≤ ε‖v − u‖

for u, v ∈ Uδ(a), and this shows, that F is strongly differentiable in a.
(ii)⇒(i): Since F is differentiable on X, for any b ∈ X and h ∈ V with b+h ∈ X

we know F (b+ h)− F (b) = F ′(b)(h) + ‖h‖·rb(h) such that

(∀b ∈ X)(∀ε)
(
∃δ = δ(b, ε)

)
‖h‖ < δ⇒‖rb(h)‖ < ε.

By (ii), in view of F ′(a) = 0 we have

F (b+ h)− F (b) = F ′(a)(h) + ‖h‖·Ra(b, h) = ‖h‖·Ra(b, h)

with lim(b,h)→(a,0)Ra(b, h) = 0. We conclude

F ′(b)(h) = ‖h‖·
(
Ra(b, h)− rb(h)

)
.

Now let ε > 0 be given. We select δ > 0 so, that u, u + h ∈ Uδ(a) implies
‖Ra(u, h)‖ < ε/4. Let b ∈ Uδ/2(a). Then we determine a δ′ = δ′(b, ε) with
0 < δ′ < δ/2 so that ‖h‖ < δ′ entails ‖rb(h)‖ < ε/4. Then b and b + h are still
contained in Uδ(a). Hence we have ‖Ra(b, h)‖ < ε/4. Now let v be an arbitrary
element of V . Set h = δ′

‖v‖+1 ·v. Then ‖h‖ < δ′ and thus

‖F ′(b)(h)‖ ≤ ‖h‖·‖Ra(u, h)− rb(h)‖ ≤ ‖h‖(ε/4 + ε/4) = ‖h‖ε/2.

Hence ‖F ′(b)(v)‖ ≤ ‖v‖ε/2 and thus |F ′(b)‖ ≤ ε/2 < ε for all b ∈ Uδ/2(a). This
shows that F ′ is continuous at a. ut



20 3. Foundations of Differentiability: Functions of several variables

This theorem illustrates the significance of strong differentiability. If differ-
entiability is secured on a neighborhood of a, then strong differentiability is a
consequence of the continuity of the derivative; the theorem makes precise, to
which extent the converse is true. Strong differentiability therefore is a concept
applying to functions whose properties are known at one point a only, and it is
being “continuously differentiable at this point”. In particular the theorem implies
the equivalence of the following two conditions Then the following statements are
equivalent:
(i) f ′:X → Hom(V,W ) is a continuous differential form.
(ii) f is strongly differentiable on X.

After these preparations we turn to the local invertibility of a function F which
is strongly differentiable in an inner point a of its domain X.

We reduce the problem to a special, more managable case. For a function
f :U → V , where U and V are open subsets of a finite dimensional normed vector
space E assume that f is differentiable at a ∈ U such that Daf is an invertible
vector space endomorphism of E. Now we define

F :U − a→ (Daf)−1V − f(a), F (x) = (Daf)−1(f(x+ a)− f(a)).

Then F (0) = 0, and D0F exists and equals the identity map 1E of E. Also
f(u) = f(a) + (Daf)

(
F (u − a)

)
. Moreover, if f is strongly differentiable at a,

then F is strongly differentiable at 0. We claim that if F is locally invertible near
0 then f is locally invertible near a: Indeed let GF (x) = x and FG(y) = y for
all x, y near 0 then we set g(y) = a + G

[
(Daf)−1

(
y − f(a)

)]
and quickly verify

g
(
f(x)

)
= x and f

(
g(y)

)
= y for all x sufficiently close to a and all y sufficiently

close to b = f(a).
Thus we shall now assume that f is strongly differentiable at 0 i.e. there is a

function R:U × U → E such that

f(u)− f(v) = u− v + ‖u− v‖·R(u, v) such that lim
(u,v)→(0,0)

R(u, v) = 0

for u, v ∈ U . In particular, this implies

f(x) = x+ ‖x‖·R(x, 0) such that lim
x→0

R(x, 0) = 0

for x ∈ U .

Now we observe that for a sufficiently small numbers r > 0 we have
(a) Ur(0) ⊆ U ,
(b) ‖R(u, v)‖ ≤ 1/2 holds for ‖u‖, ‖v‖ < r.

We fix an element y with ‖y‖ ≤ r
2 and set K(x) = x − f(x) + y. Then y = f(x)

iff K(x) = x. Moreover,

‖K(u)−K(v)‖ = ‖ − f(u) + f(v) + (u− v)‖ ≤ ‖u− v‖·‖R(u, v)‖ ≤ 1
2
‖u− v‖

for u, v ∈ U . We note that then
(c) ‖K(x)‖ ≤ ‖x‖·‖R(x, 0)‖+ ‖y‖ < r

2 + r
2 = r.
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We summarize that with the r > 0 so determined, we have

(C)

(
∀x ∈ Ur(0)

)
‖K(x)‖ <r,(

∀u, v ∈ Ur(0)
)
‖K(u)−K(v)‖ ≤1

2
‖u− v‖.

Thus we have the following information on K: For each y with ‖y‖ ≤ r
2 the

function K maps Ur(0) into itself and properly contracts distance in the sense
that d(K(u),K(v)) < 1

2d(u, v). This situation calls for an interlude on metric
spaces.

The Banach Contraction Principle
Recall that a metric space is called complete if every Cauchy sequence converges
(cf. Definition 6.5).

Definition 3.21. A self-map K:X → X of a metric space X is called a proper
contraction, if there is a number c with c < 1 such that d

(
K(x),K(y)

)
≤ c·d(x, y).

A point x satisfying K(x) = x is called a fixed point. ut

The function K:Ur(0)→ Ur(0) introduced above as K(x) = x− f(x) + y is a
proper contraction.

For self-maps of metric space we have the following extremely useful result. ,

The Banach Fixed Point Theorem

Theorem 3.22. A proper contraction of a complete metric space has a unique
fixed point.

Proof . Uniqueness: If K(x) = x and K(y) = y then d(x, y) ≤ d
(
K(x),K(y)

)
≤

c·d(x, y), that is, 0 ≤ (1− c)d(x, y) ≤ 0; this implies d(x, y) = 0 and thus x = y as
asserted.

Existence. First note via induction, that for any two points x and y in X we
have d

(
Kn(x),Kn(y)

)
≤ cnd(x, y). Now let x0 ∈ X be completely arbitrary. Set

xn = Kn(x0). I.e., xn+1 = K(xn) for n = 0, 1 . . . .. Then, by induction, we get

d(xn+k, xn) ≤d(xn, xn+1) + · · ·+ d(xn+k−1, xn+k), and thus

d(xn+k, xn) =d
(
Kn+1x0,K

nx0

)
+ · · ·+ d

(
Kn+kx0,K

n+k−1x0

)
≤ (cn + · · ·+ cn+k−1)·d

(
K(x0), x0

)
Looking at the geometric series 1 + c + c2 + · · · (see 4.7) we first note that cn +
· · · cn+k−1 ≤ cn

1−c , whence

(8) (∀n, k = 0, 1, . . .) d(xn+k, xn) ≤ cn·
d
(
K(x0), x0

)
1− c

.

This implies at once that (xn)n is a Cauchy sequence; since X is complete, x def=
limn xn = limnK

n(x0) exists. Since every proper contraction is clearly continuous
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we obtain K(x) = K(limn xn) = limnK(xn) = limn xn+1 = x. Thus x is the
required fixed point. ut

We observe quickly that the proof actually yielded a more precise estimate how
close the n-th iteration of Kn(x0) is to the limit:

A priori estimate for a Banach contraction

Corollary 3.23. Let d
(
K(x),K(y)

)
≤ c·d(x, y) for all x, y in a complete metric

space and set xn = Kn(x0). Let x = limxn be the unique fixed point of K according
to 2.40. Then

(9) (∀n = 0, 1, . . .) d(x, xn) ≤ cn·
d
(
K(x0), x0

)
1− c

.

Proof . This follows at once from (8) by letting xn+k tend to x, k →∞. ut

If we have any ideal where the fixed point might be located, then we would
naturally pick x0 near the likely location of x and thus make d(K(x0), x0) small,
as d(K(y), y) → 0 when y → x. But in the estimate (9), the factor d(K(x0), x0)
does not play a very significant role, whereas cn does: This factor decreases expo-
nentially to 0.

It is most remarkable how elementary these proofs are that yield such powerful
results. The Banach Contraction Principle is of the utmost importance for appli-
cations in many branches of pure and paplied mathematics. It is constructive in
the sense that it does not only prove the existence of a fixed point but actually
allows us to construct a sequence of “iterates” starting from an arbitrarily selected
initial element x0 which takes us very quickly near the unique fixed point. The
recursively defined sequence xn+1 = K(xn) is ideally set up for being programmed.� The Banach Fixed Point Theorem requires a proper contraction. It gen-

erally fails for self-maps f satisfying d
(
f(x), f(y)

)
< d(x, y).

Back to Local Inverses
With the help of the Banach Contraction Principle we now derive very quickly the
following intermediate result:

Lemma 3.24. Let f :U → E ∼= K
n be defined on an open set U ⊆ E containing 0

and assume that f(0) = 0 and that f is strongly differentiable in 0 with derivative
1E. Then (i) there is an r > 0 such that for all r′ ∈ ]0, r] it follows that Ur′(0) ⊆ U
and that for each y ∈ Ur′/2(0) there is a unique x

def= g(y) ∈ Ur′(0) such that
f(x) = y.

(ii) In particular, Ur′/2(0) ⊆ f
(
Ur′(0)

)
, and thus f maps every neighborhood

of 0 in U onto a neighborhood of 0.
(iii) Moreover, for x1, x2 ∈ Ur(0) the equation f(x2)− f(x1) = x2−x1 + ‖x2−

x1‖·R(x1, x2) holds with ‖R(x1, x2)‖ < 1
2 and R(x1, x2)→ 0 for (x1, x2)→ (0, 0).
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Proof . We continue the notation we have introduced in the discussion leading us to
(C); in particular, we choose r > 0 as we did in that discussion. Whatever holds for
r is also true for every smaller positive number r′ in place of r. Assume ‖y‖ ≤ r/2.
Now we apply the Banach Contraction Principle 3.22 to K:Ur(0)→ Ur(0) as given
by K(x) = x − f(x) + y and find that there is a unique fixed point x ∈ Ur(0);
thus K(x) = x and hence f(x) = y. This proves (i). Since every neighborhood of
0 contains a neighborhood Ur′(0) for some r′ < r, (ii) follows readily. Finally, (iii)
follows from the choice of r, yielding condition (b) that precedes (C). ut

Lemma 3.25. In the circumstances of Lemma 3.24, the function g:Ur/2(0) →
Ur(0) ⊆ E is strongly differentiable in 0.

Proof . By 3.24(iii), for x1, x2 ∈ Ur(0) we have

(∗)

‖f(x2)− f(x1)‖ =‖x2 − x1 + ‖x2 − x1‖·R(x1, x2)‖
≥
∣∣‖x2 − x1‖| − ‖x2 − x1‖·‖R(x2, x1)‖

∣∣
=‖x2 − x1‖

∣∣1− ‖R(x2, x1)‖
∣∣ ≥ 1

2
‖x2 − x1‖.

Now let y1, y2 ∈ Ur/2(0) and set x1 = g(y1), x2 = g(y2). Then x1, x2 ∈ Ur(0) and
y1 = f(x1) and y2 = f(x2). Accordingly, by 3.24(iii),

‖y2 − y1‖ ≥
1
2
‖g(y2)− g(y1)‖, and

g(y2)− g(y1) =x2 − x1 = f(x2)− f(x1)− ‖x2 − x1‖·R(x2, x1)
=y2 − y1 − ‖g(y2)− g(y1)‖·R

(
g(y1), g(y2)

)
=y2 − y1 + ‖y2 − y1‖·ρ(y1, y2),(∗∗)

where

ρ(y1, y2) =
{
−‖g(y2)−g(y1)‖

‖y2−y1‖ ·‖R
(
g(y1), g(y2)

)
for y1 6= y2,

0 for y1 = y2.

Then by (∗), ‖ρ(y1, y2)‖ ≤ 2·
∥∥R(g(y1), g(y2)

)∥∥. Since
∥∥R(g(y1), g(y2)

)∣∣ ≤ 1
2 by

(∗), after (∗∗) we have

‖g(y2)− g(y1)− y2 − y1‖ ≤ ‖y2 − y1‖;

letting y1 = 0 and y2 = y we see ‖g(y)−y‖ ≤ ‖y‖ which shows that g is continuous
at 0. Hence (y1, y2) 7→ R

(
g(y1), g(y2)

)
tends to 0 as (y1, y2) tends to (0, 0) and thus

ρ(y1, y2)→ 0 as (y1, y2)→ (0, 0). Then (∗∗) shows that g is strongly differentiable
at 0 with derivative 1. ut

Let us now collect the information we have on f :U → E under the given
hypotheses that f(0) = 0, and that f is strongly differentiable at 0 with D− 0f =
1E :

For all sufficiently small r > 0 we have Ur(0) ⊆ U and there is a function
g:Ur/2(0)→ Ur(0) such that f

(
g(y)

)
= y for all y ∈ Ur/2(0) and that g is strongly
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differentiable at 0. Then Lemma 3.24 applies to g in place of f and shows that
every neighborhood of 0 in Ur/2(0) is mapped under g onto a neighborhood of 0.
Thus g

(
Ur/2

)
contains Us(0) for some s ∈ ]0, r]. Then by definition of s, for each

x ∈ Us(0) there is a y ∈ Ur/2(0) such that x = g(y). Hence f(x) = f
(
g(y)

)
= y

and then g
(
f(x)

)
= g(y) = x. Thus, if we set W = f

(
Us(0)

)
⊆ Ur/2(0) then,

firstly, W is a neighborhood of 0 and, secondly, the functions ϕ:Us(0) → W and
ψ:W → Us(0), defined by ϕ(v) = f(v), ψ(w) = g(w) are inverse functions of each
other.

We are ready for the major theorem in this context:

Inverse Function Theorem

Theorem 3.26. Let X be an open set of a finite dimensional real Banach space
E and f :X → E a function which is strongly differentiable at a ∈ X such that
Daf is invertible.

Then for every sufficiently small neighborhood M of a in X there exists a
neighborhood N of b def= f(a) in E contained in f(X) such that there is a function
g:N →M , for which f

(
g(n)

)
= n for all n ∈ N , and g

(
f(m)

)
= m for all m ∈M .

Moreover, g is strongly differentiable in b, and Dbg = (Daf)−1.

Proof . We define

F :U − a→ (Daf)−1V − f(a), F (x) = (Daf)−1(f(x+ a)− f(a)).

Our preceding discussion applies to F and yields neighborhoods M ′ and N ′ of
0 and a function G:N ′ → M ′ such that F

(
G(m)

)
= m for all m ∈ M ′, and

G
(
G(n)

)
= n for all n ∈ N ′. We set M = M ′ + a and N = (Daf)N ′ + b. Then

M is a neighborhood of a and N is a neighborhood of b.
Now f(x) = f(a)+(Daf)

(
F (x−a)

)
; thus f maps M to f(a)+(Daf)−1FM ′ =

N . We defined g:M → N by g(y) = a+G
[
(Daf)−1

(
y−f(a)

)]
. Then g is correctly

defined and maps N to M . The required properties of f and g, as we said at the
beginning of our discussion are quickly verified.

Since G is strongly differentiable at 0 with derivative 1E , then g is strongly
differentiable at b and Dbg = (Daf)−1. ut

The proof remains intact verbatim if E is replaced by an arbitrary, not nec-
essarily finite dimensional Banach space; we just have to make sure that in the
definition of strong differentiability in 3.19 the linear map L:E → E is continuous.

It is a fact which is proved in Banach space theory that the inverse of a continuous linear
self-map of a Banach space, it if exists, is also continuous.

Even in one dimension we had an example presented in Exercise E4.8 in Anal-
ysis I that showed that the differentiability of f in 0 in which we constructed a
bijective function f : f → f with f(0) = 0 and D0f = 1 such that the inverse func-
tion g was discontinuous at g—let alone differentiable. This illustrates the fact
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that differentiability in one point alone is not sufficient—even if we know bijectiv-
ity beforehand. If one feels the impulse to relax the hypotheses of the preceding
Theorem 3.26 one should recall this example and also the following one:

Exercise E3.11. Consider the function f :R→ R given by

f(x) =
{

2x2 cos 1
x + x if x 6= 0,

0 if x = 0.

Show that f is differentiable everywhere and strongly differentiable in each point
of R \ {0}, but fails to be strongly differentiable and to be locally invertible at 0.

Show that f ′(0) = 1 but fails to have a local inverse at 0 by showing that f is
injective on no interval ]−δ, δ[, δ > 0.
[Hint. Compute

f ′(x) =
{

4x cos 1
x + 2 sin 1

x + 1 if x 6= 0,
1 if x = 0.

Note that f ′ is discontinuous at 0 and is continuous on R \ {0}. Invoke Theorem
3.26 to see that f is strongly differentiable in all points of R \ {0} but fails to
be strongly continuous at 0. (Alternatively, consider the sequences un = 1

2nπ and
vn = 1

(2n+1)π and compute
(
f(un)−f(vn)

)
(un−vn)−1.) Shows that every interval

]−δ, δ[ contains an x such that f ′(x) < 0. Conclude that f is not monotone on
any such interval.]

In the proof of the Inverse Function Theorem 3.26 one encounters a relatively
typical situation: The problem is reduced to finding a fixed point of a self-map,
and then a restriction to a small domain is picked so that the hypotheses of the
Banach Fixed Point Theorem apply: See (C) above.

Existence of Local Inverse Functions

Corollary 3.27. Let X be an open set of a finite dimensional real Banach space E
and f :X → E a continuously differentiable function, that is, f ′:X → Hom(E,E)
is continuous. Assume that f ′(x) is invertible for all x ∈ X. Then f(U) is open for
every open subset of U ; in particular the set Y = f(X) is open in E. Moreover,
there is a family U of open subsets of X such that the following conditions are
satisfied:
(i) X =

⋃
U =

⋃
U∈U U , and

(ii) for each U ∈ U there is a continuously differentiable inverse function denoted
by gU : f(U) → U of the restriction f |U :U → f(U), and g′U (v) = f ′

(
g(v)

)−1

for all v ∈ f(U).

Proof . By Theorem 3.20, f is strongly differentiable at every point. Thus Theorem
3.25 applies to every point a ∈ X. Hence if U is open in X and u ∈ U , then by 3.25,
there is an open neighborhood M of u such that f(M) ⊆ f(U) is a neighborhood
of f(u) in E. Hence each f(u) is an inner point of f(U); that is, f(U) is open.
This says that f maps every open set onto an open set.
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Furthermore, for each x ∈ X, Theorem 3.25 gives us open sets Mx and Nx
def=

f(Mx) in E such that x ∈ Mx, and there is a function gx:Nx → Mx inverting
f |Mx:Mx → Nx and being strongly differentiable at f(x). Let m ∈ Mx. Then
by 3.25 there is an s > 0 so small that Us(m) ⊆ Mx and that f

(
Us(m)

)
⊆ Nx

is a neighborhood of f(m) for which there is an inverse g∗: f
(
Us(m)

)
→ Us(m)

of f |Us(m) such that g∗ is strongly differntiable at f(m). For m′ ∈ Us(m) we
note g∗

(
f(m′)

)
= m′ = gx

(
f(m′)

)
. Thus g∗ and gx agree on f

(
Us(m)

)
. Hence

gx is strongly differentiable at f(m) for all m ∈ Mx. Thus by Theorem 3.26 the
function gx:Nx → Mx is continuously differentiable. Set U def= {Mx : x ∈ X}.
Then (i) and (ii) are satisfied. ut

� One should not believe that under the circumstance of Corollary 3.27, f
is invertible, and one should not believe that for U1, U2 ∈ U , one could

guarantee that gU1(y) = gU2(y) for y ∈ f(U1) ∩ f2(U). See E3.12(b) below.

Exercise E3.12. (Complex functions considered as real functions).
Fill in the details in the following discourse and explain, how Sections (a) and

(b) below are related.
(a) Let U be an open subset of C and f :U → C a holomorphic function (cf.

Definition 4.1 of Analysis I); this means that there are functions f ′:U → C and
r:U × U → C such that r(z, a)→ 0 for z → a and

(∗) f(z) = f(a) + f ′(z)(z − a) + |z − a|r(z, a).

Define an open set V ⊆ R2 by V = {(x, y) : x+ iy ∈ U}. A function F :V → R
2,

F (x, y) =
(
u(x, y), v(x, y)

)
is differentiable on V (cf. Definition 2.16) if there are

functions F ′:V → Hom(R2,R2) and R(a1,a2):V → R
2 such that R(a1,a2)

(
(x, y)

)
→

0 for (x, y)→ (a1, a2) and
(∗∗)
F (x, y) = F (a1, a2) + F ′(x, y)(x− a1, y− a2) + ‖(x− a1, y− a2)‖R(a1,a2)

(
(x, y)

)
),

where ‖(ξ, η)‖ =
√
ξ2 + η2 denotes the euclidean norm, and where

(†) F ′(x, y)(ξ, η) =
(
(∂1u)(x, y)ξ + (∂2u)(x, y)(η), (∂1v)(x, y)ξ + (∂2v)(x, y)(η)

)
.

Now return to f and write u(x, y) = Re f(x + yi) and v(x, y) = Im f(x + yi),
further ϕ(x, y) = Re f ′(x+ yi) and ψ(x, y) = Im f ′(x+ yi). Then

(‡) f ′(x+ iy)(ξ + ηi) = (ϕ(x, y)ξ − ψ(x, y)η) + (ϕ(x, y)η + ψ(x, y)ξ)i.

If we now set F (x, y) =
(
u(x, y), v(x, y)

)
, then the holomorphy of f via comparison

of (8) and (∗∗) causes F to be differentiable, and via (†) and (‡) yields

matrix of D(x,y)F =
(

(∂1u)(x, y) (∂2u)(x, y)
(∂1v)(x, y) (∂2v)(x, y)

)
=
(
ϕ(x, y) −ψ(x, y)
ψ(x, y) ϕ(x, y)

)
.
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In particular,

(CR)
(∀x+ iy ∈ U) (∂1u)(x, y) = (∂2v)(x, y),

(∂1v)(x, y) =− (∂2u)(x, y).

These equations are called the Cauchy-Riemann partial differential equations.
The derivative D(x,y)F is invertible iff detD(x,y)F 6= 0 iff |f ′(z)|2 = ϕ(x, y)2 +
ψ(x, y)2 6= 0 iff f ′(z) 6= 0. the the function F and hence the function f have local
inverses at all points (x, y), respectively z = x+ yi for which f ′(z) 6= 0.

In particular, any holomorphic function f :U → C for which f ′ vanishes no-
where on U gives a function F :V → R

2 with local inverses. But there are many
instances where the function z 7→ f(z) : U → f(U) is not invertible, e.g. z 7→
z2:C \ {0} → C \ {0} or exp:C → C \ {0}.

(b) Let X = ]1, log 2[ ×
]
− 3π

2 ,
3π
2

[
⊆ R

2 and Y = {(x, y) ∈ R2 : 1 < x2 +
y2 < 4}. Define f :X → Y by f(x, y) =

(
Re
(

exp(x + iy)
)
, Im

(
exp(x + iy)

))
=

ex·(cos y, sin y). Then all partial derivatives exist and are continuous, yielding for
the linear map f ′(x, y):R2 → R

2 the matrix(
ex cos y −ex sin y
ex sin y ex cos y

)
= ex·

(
cos y − sin y
sin y cos y

)
.

Since det
∣∣∣∣ cos y − sin y
sin y cos y

∣∣∣∣ = 1 and ex 6= 0 for all x, the derivative is invertible

at all (x, y). But f is not injective, hence not invertible, because f(log 3
2 ,−π) =

(− 3
2 , 0) = f(log 3

2 , π). We may take U = {U1, U2} with

U1 = ]1, log 2[× I1, I1 =
]
−3π

2
,
π

2

[
,

U2 = ]1, log 2[× I2, I2 =
]
−π

2
,

3π
2

[
.

Write S1 = {(x, y) ∈ R
2 : x2 + y2 = 1}. For j = 1, 2, the functions t 7→

(cos t, sin t): Ij → S
1 \ {pj}, pj = (0, (−1)j−1) have inverse functions αj . Then

we have two slit annular regions V1 = f(U1), V2 = f(U2) and inverse functions
gj :Vj → Uj , j = 1, 2, gj(u, v) = (log

√
u2 + v2, αj

(
‖(u, v)‖−1(u, v)

)
. But for

ξ = (− 3
2 , 0) ∈ V1 ∩ V2 we have

g1(ξ) = (log
3
2
,−π) and g2(ξ) = (log

3
2
, π). ut

Prove the following result complementing 3.11(a):
Theorem. Let V be open in R2 and consider a function F :V → R

2, F (x, y) =(
u(x, y), v(x, y)

)
. Assume that all partial derivatives of u and v exist and are con-

tinuous on V . Set U = {x + yi : (x, y) ∈ V } and f(x + yi) = u(x, y) + v(x, y)i.
Then f :U → C is holomorphic iff the Cauchy-Riemann partial differential equa-
tions (CR) hold. ut
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[Hint. We saw that the (CR)-equations are necessary in 6.81. For the converse, re-
call that the continuity of the partial derivatives by 3.14 implies the representation
2.46(∗∗). This representation and (CR) imply the representation 2.46(∗).]

From Exercise E3.12(b) we learned that local invertibility does not imply in-
vertibility. The local invertibility itself, however, has remarkable consequences.
An easy one first!

Corollary 3.28. Let X be an open set of a nonzero finite dimensional real Banach
space E and f :X → E a continuously differentiable function such that f ′(x) is
invertible for all x ∈ X. Then the function x 7→ ‖f(x)‖ attains no local maximum.

Proof . Since ‖·‖:E → [0,∞[ maps open sets to open sets (Exercise!), by Corollary
3.26 x 7→ ‖x‖ : X → [0,∞[ maps open sets to open sets. Assume that this function
takes a local maximum at a. Then there is an open ball U around a such that
‖f(a)‖ ∈ ‖f(U)‖ ⊆ ]‖f(a)‖ − δ, ‖f(a)‖] and thus ‖f(U)‖ would not be open. ut

Exercise E3.13. (i) Prove that for every nonzero normed vector space E, the
function x 7→ ‖x‖:E → [0,∞[ maps open sets to open sets.

(ii) Prove elementarily the following statement
Let X be an open set in a finite dimensional Banach space E and f :X → E

is differentiable in a ∈ X such that Daf is invertible. Then x 7→ ‖f(x)‖ does not
attain a local maximum at a.
[Hint. First assume f(a) 6= 0, set v = (Daf)−1·f(a) 6= 0 and e = ‖v‖−1·v is a
unit vector such that ∂a;ef = (Daf)(e) = ‖v‖−1·f(a). Then ϕ(t) def= ‖f(a+ t·e) =
‖(1 + t

‖v‖ )·f(a) + t·r(t)‖ with r(t)→ 0 for t→ 0. Conclude that ϕ does not attain
a local maximum at t = 0. If f(a) = 0 and ‖f(·)‖ attains a local maximum at a
then f is locally constant equal to 0 at a; this entails Daf = 0.]

The Implicit Function Theorem
From the Inverse Function Theorem we derive a theorem that has many applica-
tions; it will turn out that it is equivalent to the Inverse Function Theorem.

We shall consider open sets X ⊆ Rp and Y ⊆ Rq, and a function F :X × Y →
R
m. The simplest example is a level function F :R2 → R. Let (a, b) ∈ X × Y ;

we raise the question whether there are neighborhoods U and V of a and b in X,
respectively, Y , and a function f :U → V with f(a) = b such that F

(
x, f(x)

)
=

F (a, b) for all x ∈ U . Such a function f will be called an implicitly defined function.
As an example let us look at F :R2 → R, F (x, y) = x2 + y2, and F (a, b) = 1. If
−1 < a < 1, then the equation x2 + f(x)2 = 1 can be solved for f(x), yielding
f(x) =

√
1− x2 for −1 < x < 1. If a = −1 or a = 1, such a solution function does

not exist.

We assume that F is strongly differentiable at (a, b). We define functions
F1:X → R

m and F2:Y → R
m, given by F1(x) = F (x, b) and F2(y) = F (a, y). If

I1(x) = (x, b) and I2(y) = (a, y), then F1 = F ◦ I1 and and F2 = F ◦ I2. Thus
F1 and F2 are differentiable at a, respectively b. We denote their derivatives by
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∂1F (a, b) and ∂2F (a, b), respectively. Then, by the chain rule, [∂1F (a, b)](u) =
(D(a,b)F ◦ DaI1)(u) = D(a,b)F (u, 0), similarly and [∂2F (a, b)](v) = D(a,b)F (0, v).
Thus

D(a,b)F (u, v) = ∂1F (a, b)(u) + ∂2F (a, b)(v).

We shall call ∂1F (a, b) and ∂2F (a, b) the first, respectively, second partial deriva-
tives of F at (a, b).

Now we assume that the second partial derivative ∂2F (a, b):Rq → R
m is in-

vertible. This means, in particular, that we assume q = m. The matrix of D(a,b)F
is an m× (p+ q)-matrix (m = q) which consists of an m× p-block, the matrix of
∂1F (a, b), and of an m× q-block, the matrix of ∂2F (a, b), and we notice that this
latter one is quadratic.

Figure 3.4

We now introduce a new function G:X × Y → R
p × Rm defined by G(x, y) =(

x, F (x, y)
)
. Then G is strongly differentiable in (a, b) and its derivative is given

by

D(a,b)G(u, v) =
(
u, ∂1F (a, b)(u) + ∂2F (a, b)(v)

)
.

For a given vector (s, t) ∈ R
p × Rq, the equation (s, t) = (u, ∂1F (a, b)(u) +

∂2F (a, b)(v)) is easily solved for (u, v) by u = s and v =
(
∂2F (a, b)

)−1(
t −

∂1F (a, b)(s)
)
. Therefore D(a,b)G is invertible and has an inverse given by

(10) (D(a,b)G)−1(s, t) =
(
s,
(
∂2F (a, b)

)−1(
t− ∂1F (a, b)(s)

))
.

Since F is strongly differentiable at (a, b) so is G. Hence the Theorem of the
Existence of Local Inverse Functions 3.25 applies. Thus for all sufficiently small
neighborhoods U×V of (a, b) in X×Y there exists a neighborhood W of G(a, b) =(
a, F (a, b)

)
in Rp×Rm and a unique function H:W → U×V inverting G|(U×V ) :

U × V → W . Since G is of the form G(x, y) =
(
x, F (x, y)

)
, the function H is of

the form H(u, v) =
(
u, h(u, v)

)
for (u, v) ∈ W with a function h:W → R

m which
is strongly differentiable in

(
a, F (a, b)

)
. Then (u, v) = GH(u, v) = G

(
u, h(u, v)

)
=
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u, F

(
u, h(u, v)

))
, that is

(11) (∀(u, v) ∈W ) v = F
(
u, h(u, v)

)
.

Furthermore,

D(a,F (a,b))H(s, t) = (D(a,b)G)−1(s, t) =
(
s,
(
∂2F (a, b)

)−1(
t− ∂1F (a, b)(s)

))
by (10). Hence D(a,b)h(s, t) =

(
∂2F (a, b)

)−1(
t− ∂1F (a, b)(s)

)
.

There is an open set W ′ ⊆ W containing
(
a, F (a, b)

)
. Then the set {x ∈ U :(

x, F (a, b)
)
∈W ′} is an open neighborhood Ua of a, contained in U . Finally, we set

f(x) = h
(
x, F (a, b)

)
for u ∈ Ua. Then F

(
x, f(x)

)
= F

(
x, h

(
x, F (a, b)

))
= F (a, b)

by (11) and f satisfies the requirement. Moreover, Daf(s) = (D(a,F (a,b))h)(s, 0) =(
∂2F (a, b)

)−1(0 − ∂1F (a, b)(s)
)

= −
(
∂2F (a, b)

)−1
∂1F (a, b)(s), and thus Daf =

−
(
∂2F (a, b)

)−1
∂1F (a, b)(s). Finally, if F (x, y) = F (a, b) for (x, y) ∈ Ua × V ,

then G(x, y) =
(
x, F (x, y)

)
=
(
x, F (a, b)

)
and thus (x, y) = H

(
x, F (a, b)

)
=(

x, h(x, F (a, b)
)

=
(
x, f(x)

)
. Hence f(x) is the unique solution of the equation

F (x, y) = F (a, b) with x ∈ Ua and y ∈ V .

Implicit Function Theorem

Theorem 3.29. Let X ⊆ Rp and Y ⊆ Rm be open sets and F :X × Y → R
m

a function which is strongly differentiable at (a, b) ∈ X × Y . We assume that the
second partial derivative ∂2F (a, b):Rm → R

m of F is invertibale. Then there are
an open neighborhood Ua of a in X, an open neighborhood V of b in Y , and a
function f :Ua → Y with f(a) = b such that F

(
x, f(x)

)
= F (a, b) holds for all

x ∈ Ua, and f(x) is the unique solution of the equation F (x, y) = F (a, b) with
x ∈ Ua and y ∈ V .

Moreover, f is strongly differentiable in a and

(12) Daf = −
(
∂2F (a, b)

)−1
∂1F (a, b). ut

There is simple way to memorize (12). Once one has the function f and its
properties, one differentiates both sides of the equation F

(
x, f(x)

)
= 0 and finds

∂1F (a, b) + ∂2F (a, b) ◦Daf = 0 from which we obtain (12).

Level sets revisited
With the Implicit Function Theorem we can make our discussion of the level lines
of a level function f :X → R, X open in Rn precise. The level set of level f(a)
is the set H = {x ∈ X : f(x) = f(a)} where the graph of f attains the “height”
f(a). If f is continuously differentiable, then it is strongly differentiable in each
point x of X by 3.20.

Consider a point a ∈ X for which ∂f
∂x1

∣∣∣
x=a

6= 0; as long as grada f 6= 0,

there is at least one partial derivative ∂f
∂xj

∣∣∣
x=a

6= 0, and we can carry out the

following argument with j in place of 1. We write Rn as R×Rn−1 and consider a
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neighborhood U×V ⊆ X, a1 ∈ U ⊆ R and a′ = (a2, . . . , an) ∈ V ⊆ Rn−1. We look
at the the restriction of the function f to U × V . Since the first partial derivative
∂1f(a1, a

′) = ∂f
∂x1

∣∣∣
x=a

is nonzero, hence invertible in the sense of the Implicit
Function Theorem, Theorem 3.29 implies and yields an open neighborhood Ua′ of
a′ in Rn−1 and a function ϕ:Ua′ → R such that for x′ = (x2, . . . , xn) ∈ Ua′ we
have (s(x′), x′) ∈ U × V ⊆ X and

f(s(x2, . . . , xn), x2, . . . , xn) = f(a).

This means that the set

{(s(x2, . . . , xn), x2, . . . , xn) : (x2, . . . , xn ∈ Ua′)}

is firstly a neighborhood of f(a) in the level set H and secondly is a piece of a
hypersurface (of “dimension” n−1) in Rn. Thus we are justified to call the level set
H, whenever grada f does not vanish, a level surface. If n = 2, the expression level
line is quite appropriate. We will again identify Rn and R × Rn−1 and represent
x = (x1, x2, . . . , xn) in the form (x, x′) with x′ = (x2, . . . , xn).

Figure 3.5

By Theorem 3.29, the function s:Ua′ → R is a differentiable level function (in
one dimension lower), and the formula (12) for the derivative yields

(12′) s′(a′) = grada′ s = −(∂1f)(a)−1·((∂2f)(a), . . . , (∂nf)(a)),

and thus also

(13)
f ′(a) = grada f = ((∂1f)(a),−(∂1f)(x) grada′ s)

= (∂1f)(a)·(1,− grada′ s).

The equation of the tangent hyperplane to the set {(s(x′), x′) ∈ R × Rn−1 : x′ ∈
Ua′} at the point (s(a′), a′) is x1 = s(a′) +

(
s′(a′) | x′

)
since the affine approxi-

mation of s at a′ is x′ 7→ s(a′) + (s′(a′) | x′), x′ = (x2, . . . , xn). This equation is
equivalent to

(14)
(
(1,−s′(a′)) | x

)
= s(a′) with x = (x1, . . . , xn).
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In (13) and (14) we finally proved facts which, in our earlier discussion, we
were able to illustrate only in an intuitive fashion. Indeed we have now shown:

Theorem 3.30. Let f :X → R be a continuously differentiable level function
on an open set X of Rn. If at a ∈ X we have ∂1f(a) 6= 0 then the level set
H

def= {x ∈ X : f(x) = f(a)} is locally near a the graph of a differentiable function
s:Ua′ → R, where Ua′ is an open neighborhood of a′ = (a2, . . . , an) in Rn−1:

(∀(x2, . . . , xn) ∈ Ua) f
(
s(x2, . . . , xn), x2, . . . , xn

)
= f(a1, . . . , an).

The tangent hyperplane to H at a = (a1, . . . , an) in Rn is perpendicular to the
nonzero vector grada f in Rn. ut

Optimizing functions under constraints

The Implicit Function Theorem permits us to solve a classical problem of find-
ing maxima and minima of a given real valued function f :X → R on some subset
X of Rn subject to extra conditions, called constraints, given frequently in the
form of equations g1(x) = · · · = gm(x) = 0 with level functions gj :X → R. We
combine these to a function g:X → R

m, g(x) =
(
g1(x), . . . , gm(x)

)
. Let us make

this precise in the following definition:

Definition 3.31. Let f :X → R and g:X → R
m, X ⊆ Rn be functions. If for

a ∈ X there is a neighborhood U of a in X such that

f(a) = max{f(x) : x ∈ U and g(x) = 0},

then we say that f attains in a a local maximum subject to the constraint g(x) = 0.
An analogous definition applies with “min” in place of “max”. Also we say that
f attains a strict local maximum in a subject to the constraint g(x) = 0 if U can
be chosen so that

(∀x ∈ U \ {a}) g(x) = 0⇒ f(x) < f(a).

Similarly for “min” in place of “max”. ut

We are looking for (at least necessary) conditions for f to attain local extrema
subject to constraints.
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Figure 3.6

Figure 3..6 represents the optimisation problem: “find the local maxima and
minima of the function f :R2 → R, f(x, y) = x2 − y2 subject to the constraint
g(x, y) = 0 g(x, y) = x2 + y2 − 1.” This example shows that the function f may
not have any local extrema at all, while under constraints there may be maxima
and minima.

Now let a be an inner point of X with g(a) = 0. In finding necessary conditions
for f to attain a local extremum a under constraints g1(x) = · · · = gm(x) =
0 we expect to have fewer constraint equations than free variables x1, . . . , xn;
that is we assume m < n and write Rn in the form R

n−m × Rm and each x =
(x1, . . . , xn) ∈ X in the form x = (x′, x′′) with x′ = (x1, . . . , xn−m) and x′′ =
(xn+1−m, . . . , xn). Then f(x) = f(x′, x′′), and since a is an inner point of X there
are open neighborhoods U of a′ and V ov a′′ such that U × V ⊆ X. Now we
assume that g is strongly differentiable at a = (a′, a′′) and that the second partial
derivative ∂2g(a) is invertible. Then by the Implicit Function Theorem there is
an open neighborhood Ua′ of a′ in Rn−m and a function h:Ua′ → R

m such that(
x′, h(x′)

)
∈ U × V for all x′ ∈ Ua′ and that

(∀x′ ∈ Ua′) g
(
x′, h(x′)

)
= g(a′, a′′) = g(a) = 0.

Here h(x′) is the unique solution x′′ of the equation g(x′, x′′) = 0 for x′ ∈ Ua′ .
Now we know that the function ϕ:Ua′ → R, ϕ(x′) = f

(
x′, h(x′)

)
attains a local

maximum in a′. Hence by 3.17, Da′ϕ = 0. Let θ:Ua′ → U × V be given by
θ(x′) =

(
x′, h(x′)

)
, then Da′θ(u′) =

(
u,Da′h(u′)

)
. By the Chain Rule, Da′ϕ(u′) =

(Da′,a′′f ◦ Da′θ)(u′) = Daf
(
u′, Da′h(u′)

)
= ∂1f(a)(u) + ∂2f(a)

(
Da′h(u)

)
. Thus

we have

(15) ∂1f(a) = −∂2f(a) ◦Da′h.
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If we set ψ:Ua′ → U × V , ψ(x′) = g
(
x′, h(x′)

)
, then ψ is the zero function, and

from differentiating it we obtain, in a fashion completely paralell to the one that
yielded (61)

(16) Da′h = −
(
∂2g(a)

)−1
∂1g(a).

Therefore, if we define the linear form L on Rm by L = ∂2f(a)◦
(
∂2g(a)

)−1:Rm →
R, that is ∂2f(a) = L ◦ ∂2g(a), then from (15) and (16) we obtain ∂1f(a) =
L ◦ ∂1g(a), and thus altogether

(17) Daf = L ◦Dag.

We have proved the following result

Theorem 3.32. Let X ⊆ Rn have an inner point a and let f :X → R and g:X →
R
m be functions such that f is differentiable in a and g is strongly differentiable

in a. Assume that m < n, allowing us to write Rn as Rn−m×Rn and each x ∈ X
as x = (x′, x′′) with x′ ∈ Rn−m and x′′ ∈ Rm. We further assume that
(i) f attains a local extremum at a = (a′, a′′) subject to the constraint g(x) = 0,

and
(ii) ∂2g(a) is invertible, i.e. the function x′′ 7→ g(a′, x′′) has an invertible derivative.

Then there exists a linear form L:Rm → R such that

(18) Daf = L ◦Dag.
ut

Corollary 3.33. Let X ⊆ R
n be open let f, gj :X → R, j = 1, . . . ,m < n

functions with be continuous partial derivatives. We further assume that
(i) f attains a local extremum at a subject to the constraints gj(x) = 0, j =

1, . . . ,m and
(ii) We have

det
(

∂gj
∂xn−m+k

∣∣∣∣
x=a

)
6= 0.

Then there exist numbers λ1, . . . , λm such that

(18′)
∂f

∂xk

∣∣∣∣
x=a

=
m∑
j=1

λj
∂gj
∂xk

∣∣∣∣
x=a

, k = 1, . . . , n.

Proof . We set g = (g1, . . . , gm). Since all partial derivatives of the gj and of
f are continuously differentiable, by 3.14 and 3.20, both f and g are strongly
differentiable. The hypotheses (i) and (ii) correspond precisely to the hypotheses
(i) and (ii) of 3.32. Hence 3.15 applies, and if we set L = (λ1, . . . , λn) then (18) is
exactly (18′). ut

Equation (18′) is a system of m linear inhomogeneous equations in the un-
knowns λ1, . . . , λn, and the conclusion of Corollary 3.33 says that this system has
a solution.
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The actual algorithm for finding the numbers a1, . . . , an is complicated by the
task to find, in addition, the numbers λ1, . . . , λm; however, we must not forget
that we have, in addition to the equations (18′), the m equations gj(x) = 0,
j = 1, . . . ,m. Indeed we can formulate the following

Algorithm 3.34. If the data in Corollary 3.33 are given, define a new function
F :X × Rm → R by

F (x1, . . . , xn, λ1, . . . , λm) =f(x1, . . . , xn)
−λ1g1(x1, . . . , xn)− · · · − λmgm(x1, . . . , xn),

and find the local extrema of this function.

Proof . A necessary condition for F to attain a local extremum at

(a1, . . . , an, λ1, . . . , λm)

is D(a1,...,an,λ1,...,λm)F = 0, and this is equivalent to the n equations of (18’) and
the m equations gj(x) = 0, j = 1, . . . ,m. ut

The numbers λ1, . . . , λm are called Lagrange multipliers.

As is usual with optimization problems, if the algorithm yields one or several
solutions

(a1, . . . , an, λ1, . . . , λm),

one has to determine on the basis of other information whether, in this critical
point, f attains a local maximum, a local minimum, or neither on the set defined
by the constraints. If the functions f and g are defined on a set X that is not open,
the algorithm applies to the interior of X, i.e. the set of innner points of X in Rn.
Under these circumstances local minima or maxima may occur at boundary points
which then have to be tested with other methods. As a guiding principle the one
dimensional case gives an idea what happens: see Corollary 4.27 in Analysis I.

It seems as if, in our discussion of 3.32, 3.33, and 3.34, the last m coordinates
xn−m+1, . . . , xn played a distinguished role in so far as we assumed 3.32(ii) or
3.33(ii). However, what is actually essential for the argument is that
• the derivative Dag:Rn → R

m is surjective, i.e. has rank m.
If this condition is satisfied, then the theory of linear maps and matrices shows
that there is a subset I ⊆ {1, . . . , n} such that the restriction of Dag to RI

def=∏n
j=1 R

εj ⊆ Rn, εj = 1 if j ∈ I and = 0 otherwise, is bijective. This is tantamount
to saying that the m× n-matrix of Dag has an m×m-submatrix A consisting of
m columns with column indices j ∈ I, such that detA 6= 0. We then select the
m coordinates with the indices from I in the place of the last m coordinates and
carry out the discussion for these.


