
Chapter 2
Foundations of Differentiability: Curves

The calculus of several variables deals with functions f :Rn → R
m or, more

generally, with functions from an open subset of an n-dimensional normed vector
space to an m-dimensional normed vector space. Several special cases leap to
mind: n = 1, m arbitrary; n arbitrary, m = 1; n = m arbitrary. In due course we
shall address all of these, but the first special case permits us a gentle transition
from Analysis I because the domain is one dimensional: One used to say we have
only one independent variable.

1. Curves in Metric spaces and in Banach spaces

Indeed the simplest special case of functions f :X → Y with X ⊆ Kn and Y ⊆ Km
is that of n = 1, while the dimension m of the range space is arbitrary. Neverthe-
less, this special case is highly interesting. If the domain is one dimensional, we
may allow more general circumstances with the range without creating additional
difficulties. We know that Rm is a Banach space for any norm by 1.11 and 1.27.
Thus we shall allow the range space to be an arbitrary Banach space E (�espace�)
over K = R or = C. For many basic aspects we might just as well consider arbi-
trary metric spaces as range spaces. When we now discuss the differentiability of
functions f : I → E where I ⊆ R is a real interval, then the theory is very close
to the theory of differentiability of one variable calculus which we discussed in
Analysis I. The first section of this chapter can therefore be considered as a bridge
between Analysis I and general several variables differential calculus.

Definition 2.1. A curve f in a metric space X is a continuous function f : I → X
from an interval I ⊆ R into the metric space X. This applies, in particular, to
each Banach space E in place of X. ut

Thus, in particular, a curve in Rn is nothing else than an n-tuple of continuous
functions fj : I → R such that f(t) =

(
f1(t), . . . , fn(t)

)
.
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Figure 2.1

Often the number t in the argument of a curve is interpreted as a time variable
and the vector f(t) ∈ E as position of a point in the space E. Thus a curve
represents a “motion” of a point in space. Since the metric space X and a Banach
space E are very general concepts, the elements of X or E often represent the state
of a complex system which may be characterised by several parameters describing
physical, social, economic conditions that change in time. Then a curve describes
the development of such a system in time. One often refers to it as a dynamical
system.

In Theorem 1.35, for every Banach algebra A, for a ∈ A, and T ≥ 0 we have seen
a curve t 7→ exp t·a : [0, T ]→ A. In particular, if V is a finite dimensional Banach
space such as Kn with some norm, for each L:V → V in Hom(V, V ) we have curves
t 7→ exp t·L : [0, T ] → Hom(V, V ), giving us curves t 7→ (exp t·L)(v0) : [0, T ] → V
for each v0 ∈ V .

� The simplicity of the intuition of curves is deceptive. There are some very
strange curves. Peano and Hilbert discovered in the eighties of the 19th

century that there are curves f : [0, 1] → R
2 in the plane which fill out an entire

triangle or square.
These curves are obtained as limits of a sequence of functions; the diagrams

indicate how one might proceed to create a “space filling” curve from the unit
interval onto the unit square as a uniform limit of a sequence of piecewise affine
functions.

We shall see just a little later that a differentiable curve cannot be space filling.
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If a curve f : I → E describes a “motion” of a “particle” in a normed space E
such as E = R

3, ordinary three space with the euclidean norm, then we would
like to have a precise concept of a “velocity” with which the point progresses at a
given time t0 ∈ E, when the particle is at the point f(t0) ∈ E.

Definition 2.2. Let f : I → E be a curve in a normed space. We say that it
is differentiable at t0 ∈ I if there is a vector v ∈ E and a curve r: I → E (both
depending on t0) such that

(1) f(t) = f(t0) + (t− t0)·v + r(t) and lim
t→t0
t6=0

(t− t0)−1r(t) = 0.

We shall say that f is differentiable if it is differentiable at all points of I. ut

This says that near f(t0) the curve f is very close to the affine curve t 7→
t·v + (f(t0)− t0·v) : R→ E.

Proposition 2.3. A curve f : I → E is differentiable at t0 if and only if

lim
t→t0
t6=t0

1
t− t0

·
(
f(t)− f(t0)

)
exists. If this is the case then this limit and the vector v ∈ E of (1) agree. In
particular, v is uniquely determined.

Proof . Exercise. ut

Exercise E2.1. Prove Proposition 2.3.
[Hint. The proof is easy. Its organisation may be modelled according to the proof
of Theorem 4.7.]

We follow the elementary case situation of Definition 2.3 and call the vector v
the derivative of the curve f at t0 and denote it by f ′(t0), ḟ(t0) or df(t)

dt

∣∣∣
t=a

. If
the curve f is interpreted as a “motion” or a “dynamical system,” we shall also
call ḟ(t0) the velocity, respectively, the rate of change at time t0.

If E = K
n, then f(t) =

(
f1(t), . . . , fn(t)

)
and f ′(t) =

(
f ′1(t), . . . , f ′n(t)

)
.

As a first example we consider a point which moves uniformly on a spiral as
indicated by the rule f(t) = (cos t, sin t, t). At time t this point has the velocity
f ′(t) = (− sin t, cos t, 1). The vector f(2π) − f(0) = (0, 0, 2π) is not ever parallel
to any of the velocity vectors f ′(t) = (− sin t, cos t, 1), t ∈ [0, 2π]. So this example
shows, in particular that no 3-dimensional analog of the Mean Value Theorem can
be expected. (See 4.29 and 4.53 and the comments following 4.53.)

Incidentally, the example we just considered may be seen in the context of the curves defined

via the exponential function which we observed immediately after Definition 1.36 in the section
on norms. Indeed let

L =

(
0 −1 0

1 0 0

0 0 0

)
; then exp t·L =

(
cos t − sin t 0

sin t cos t 0

0 0 1

)
,
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and thus (
cos t

sin t

t

)
= (exp t·L)

(
1

0

0

)
+ t·

(
0

0

1

)
.

A consequence of the Mean Value Theorem for a continuous function f : [a, b]→
R, differentiable on ]a, b[, saying (∃u ∈ ]a, b[) f(b)− f(a) = f ′(u)(b− a), is that

|f(b)− f(a)| ≤ (b− a) sup{‖f ′(t)‖ : a < t < b},

provided, of course, that the derivative is bounded on ]a, b[. (Cf. Corollary 4.30(ii).)
A generalisation of this theorem to curves, fortunately, remains valid and yields
important information.

Generalized Mean Value Theorem for Curves

Theorem 2.4. Assume that f : [a, b] → E is a curve which is differentiable on
]a, b[, and that {f ′(t) : t ∈ ]a, b[} is bounded. Set

(2) ‖f ′‖ def= sup{‖f ′(t)‖ : t ∈ ]a, b[}.

Then

(3) ‖f(b)− f(a)‖ ≤ (b− a)·‖f ′‖.

For the proof of this theorem we prove the following lemma, which will quickly
yield a proof of 2.4.

Lemma 2.5. Let f : [a, b] → E and g: [a, b] → R be continuous functions which
are differentiable on ]a, b[ and which satisfy

(4) ‖f ′(t)‖ ≤ g′(t) for a < t < b.

Then

(5) ‖f(b)− f(a)‖ ≤ g(b)− g(a).

Proof . Let a < t0 < b and use the differentiability of f and g to find remainder
functions ρ: ]a, b[→ E and σ: ]a, b[→ R such that

(6) lim
t→t0
t6=t0

|t− t0|−1ρ(t) = 0, lim
t→t0
t6=t0

|t− t0|−1σ(t) = 0, and

f(t)− f(t0) =(t− t0)·f ′(t0) + ρ(t),(7)
g(t)− g(t0) =(t− t0)·g′(t0) + σ(t).(8)

Hypothesis (4) implies g′(t) ≥ 0 for a < t < b. Thus g is isotone by 4.33. Given an
ε > 0 we find a t1 with t0 < t1 < b such that t0 ≤ t ≤ t1 implies (t− t0)−1‖ρ‖ < ε

2
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and (t− t0)−1‖σ‖ < ε
2 . Hence for these t, in view of (4) we get

‖f(t)− f(t0)‖ ≤(t− t0)·‖f ′(t0)‖+
ε

2
(t− t0)

≤(t− t0)g′(t0) +
ε

2
(t− t0),(9)

g(t)− g(t0) ≥(t− t0)g′(t)− ε

2
(t− t0).(10)

Hence

(11) (∀ε > 0)(∃t1 ∈ ]t0, b[)(∀t0 < t < t1) ‖f(t)− f(t0)‖ ≤ g(t)− g(t0) + ε(t− t0).

Now let ε > 0 be arbitrary. We consider the functions ϕ, ψ: [a, b]→ R defined by

(12) ϕ(t) = ‖f(t)− f(a)‖ − ε and ψ(t) = g(t)− g(a).

We set

(13) I = {t ∈ [a, b] : (∀s ∈ [a, t]) ϕ(s) ≤ ψ(s) + ε(s− a)}.

Then, by definition (13), I is an interval containing a. Put b′ = sup I. By (12)
and the continuity of the norm, the functions ϕ and ψ are continuous because of
the continuity of f and g, and ϕ(a) = −ε and ψ(a) = 0. We deduce a < b′.

Now we claim that b′ = b; once this is proved we have ‖f(b) − f(a)‖ − ε =
ϕ(b) ≤ ψ(b) + ε(b− a) = g(b)− g(a) + ε(b− a); since ε was arbitrary, (17) follows
and this will complete the proof of the Lemma.

Now we suppose that the assertion is false and derive a contradiction. Thus,
by assumption, a < b′ < b. Let sn ∈ I be a sequence converging to b′; then
ϕ(sn) ≤ ψ(sn) + ε(sn − a). Thus using the continuity of ϕ and ψ, passing to the
limit we get

ϕ(b′) ≤ ψ(b′) + ε(b′ − a).

Now by (11) we find a t1 such that b′ < t0 < b and that

ϕ(t) =‖f(t)− f(a)‖ − ε ≤ ‖f(t)− f(b′)‖+ ‖f(b′)− f(a)‖ − ε
≤g(t)− g(b′) + ε(t− b′) + ϕ(b′)
≤g(t)− g(b′) + ε(t− b′) + ψ(b′) + ε(b′ − a)
=g(t)− g(b′) + ε(t− b′) + g(b′)− g(a) + ε(b′ − a)
=g(t)− g(a) + ε(t− a) = ψ(t) + ε(t− a).

It follows that t0 ∈ I and thus t0 ≤ sup I = b′, a contradiction which proves the
claim b′ = b. The proof is complete. ut

For a proof of Theorem 2.4 we define g(t) = ‖f ′‖·t and thus get ‖f ′(t)‖ ≤
‖f ′‖ = g′(t). Then Lemma 2.5 yields ‖f(b) − f(a)‖ ≤ g(b) − g(a) = ‖f ′‖(b − a),
and this concludes the proof of 2.4. ut

The proof is similar in spirit to the proof of the Théorème d’ accroissements
finis 4.34. There we proved an estimate from below, here we prove one from above.
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Exercise E2.2. Prove the following assertion:
If, in Lemma 2.5 and in Theorem 2.4, differentiability of f and g is assumed only
with countably many exceptions, the conclusions remain nevertheless true.
[Hint. Consider the hint for the proof of 4.34 in E4.14. Modify (5) above by replac-
ing “+ε” by “+εσ(s)” with the jump function σ of the proof of 4.34. Distinguish
the cases (a) and (b) of the proof of 4.34; in case (a) proceed as in the proof above,
in case (b) follow the idea suggested in the proof of 4.34.]

An easier generalisation is readily established:

Corollary 2.6. (i) Assume that the curve f : [a, b] → E is continuous and piece-
wise differentiable, that is, there is a partition a = t0 < t1 < · · · < tn = b of
[a, b] such that f is differentiable on each interval ]tj−1, tj [, j = 1, . . . , n. We
assume, moreover, that the norms ‖f ′(t)‖ of the derivative are bounded so that
‖f ′‖ = sup

{
‖f ′(t)‖ : t ∈ [a, b] \ {t0, . . . , tn}

}
exists. Then

‖f(b)− f(a)‖ ≤ ‖f ′‖·(b− a).

(ii) If f : [a, b] → E is continuous and piecewise differentiable, and if f ′(t) = 0
for all t in which f ′(t) exists, then f is constant.

Proof . Exercise. ut

Exercise E2.3. Prove Corollary 2.6
[Hint. For (i) use Theorem 2.4 and induction. Finally, (ii) is an easy conse-

quence of (i).� The nomenclature “Generalized Mean Value Theorem” for 2.4 is not par-
ticularly well chosen. There is no “mean value” left in this theorem that

would justify this name; it is chosen simply to remind us that it remains as the
only available substitute for the Mean Value Theorem in one variable.
We now derive a lemma which will directly lead to a final generalization of the
Mean Value Theorem in the next chapter.

We recall from Definition 4.36, that a metric space X is arc connected if for
any pair of points a, b ∈ X there is a curve γ: [0, 1] → X connecting a and b, i.e.
γ(0) = a and γ(1) = b. In general, such a curve is not rectifiable. However, the
proof that we have given for Proposition 4.39 applies to prove the following result

Proposition 2.7. For an open subset X of a normed vector space E, the following
statements are equivalent:

(i) X is connected.
(ii) Each pair of points a, b ∈ X is connected by a curve γ: [α, β]→ X such that for

a suitable partition t0 = 0 < t1 < · · · < tn = 1 of the interval [α, β] the curve
γ|[tk−1, tk] is affine; i.e. γ

(
tk−1 +τ(tk− tk−1)

)
= γ(tk−1)+τ

(
γ(tk)−γ(tk−1)

)
,

τ ∈ [0, 1], k = 1, 2, . . . , n.

Proof . Exercise. ut
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Exercise E2.4. Prove Proposition 2.7.
[Hint. (ii)⇒(i) is straightforward (cf. 4.37). For a proof of (i) implies (ii) pick an
x0 ∈ X and let U = {x ∈ X : x0 and x are connected by a curve γ such as in
(ii). If x ∈ U then since X is open, there is an open ball W of radius r > 0 with
center γ(β) which is contained in X. Let w ∈ W , say δ = d(γ(β), w) < r. Define
γ1: [α, β+δ]→ X with γ1(t) = γ(t) for t ∈ [α, β] and γ1(β+τ) = γ(β)+τ

(
w−γ(β)

)
for 0 ≤ τ ≤ δ. conclude that W ⊆ X and thus that U is open. If V ⊆ X is the set
of all x ∈ X which cannot be reached from x0 by a curve γ such as in (ii), show
that an entire neighborhood W of x0 is in V , i.e. that V is open. Since x0 ∈ U
and X is connected, V = ∅, i.e. X = U follows.]

Definition 2.8. In accordance with 4.32, curves such γ in 2.7(ii) are called
piecewise affine. For a piecewise affine curve γ: [α, β] → X we say that ‖γ(t1) −
γ(t0)‖+ ‖γ(t2)−γ(t1)‖+ · · ·+ ‖γ(tn)−γ(tn−1)‖ is the arc length L = L(γ) of γ.ut

Let X be an open subset of a finite dimensional normed vector space E. For
x, y ∈ X, set

d(x, y) = inf{L : L is the arc length of a piecewise affine curve from x to y}.

Lemma 2.9. We stay in the circumstances of Definition 2.7.

(i) Given x, y ∈ X and an ε > 0, we find a piecewise affine curve γ from x to
y whose arc length L satisfies L ≤ d(x, y) + ε.

(ii) The function d:X ×X → R is a metric.

Proof . (i) is a consequence of 1.30 for infs, and Definition 2.7.
(ii) Let us prove the triangle inequality; the remainder is immediate. Let

x, y, z ∈ X and ε > 0. By (i) above, there is a piecewise affine curve γ1 from x
to y whose arc length L1 satisfies L1 < d(x, y) + ε

2 . Likewise there is a piecewise
affine curve γ2 from y to z whose arc length L2 satisfies L2 < d(y, z) + ε

2 . From
γ1 and γ2 we construct a rectifiable arc γ from x to z with arc length L1 + L2.
Then d(x, z) ≤ L1 + L2 + d(x, y) + ε

2 + d(y, z) + ε
2 = d(x, y) + d(y, z) + ε. Since ε

is arbitrary, d(x, z) ≤ d(x, y) + d(y + z) follows. ut

Exercise E2.5. (i) Supply the missing details of the proof of 2.9(ii), notably the
positive definiteness and symmetry of d and the explicit definition of γ from γ1

and γ2. Why is the ε-argument necessary?
(ii) Prove the following assertion:
If for all t ∈ [0, 1] we have (1− t)·x+ t·y ∈ X then d(x, y) = ‖y − x‖.

The metric d on X is called the geodesic distance.



1. Curves in Metric spaces and in Banach spaces 9

Figure 2.3

If any two points in X of a normed vector space E can be connected by a
straight line segment, i.e. if X is convex, then d(x, y) = ‖y − x‖, i.e. the geodesic
distance agrees with the induced metric of E.

Mean Value Lemma

Lemma 2.10. Let X be a connected open subset of a Banach space E. Let
f :X →W be a differentiable function with values in a finite dimensional normed
vector space W and assume that for each piecewise differentiable curve γ: [a, b]→ U
in U the curve f ◦ γ: [a, b] → W is differentiable, and that theere is a number C
such that ‖(f ◦ γ)′(t)‖ ≤ C·‖γ′(t)‖ for all such piecewise differentiable curves γ
and all t in the domain of γ.

(∗) (∀x, y ∈ X) ‖f(x)− f(y)‖ ≤ C.d(x, y).

If x and y are connected in X by a straight line segment, then

(∗∗) ‖f(x)− f(y)‖ ≤ C·‖x− y‖.

Proof . Let x, y ∈ X and ε > 0. By 2.9(i) we find a piecewise affine curve
γ: [α, β] → X such that γ(α) = x, γ(β) = y and that its arc length L(γ) satisfies
L < d(x, y) + ε. Here L(γ) =

∑n
k=1 ‖γ(tk) − γ(tk−1‖ where t0 = α, tn = β,

and where γ is affine on [tk−1, tk], k = 1, 2, . . . , tn. Then ‖γ(tk) − γ(tk−1)‖ =
‖(tk− tk−1)·γ′(τ)‖ = (tk− tk−1)·‖γ′(τ)‖ for any τ ∈ ]tk−1, tk[. Since γ′ is constant
on ]tk−1, tk[, we can write ‖γ′(τ)‖ = sup{‖γ′(t)‖ : tk−1 < t < tk}. By hypothesis,
we have ‖(f◦γ)′(t)‖ ≤ C·‖γ′(t)‖ and thus for τ ∈ ]tk−1, tk[ we have (tk−tk−1)·‖(f◦
γ)′‖ ≤ C·(tk − tk−1)· sup{‖gamma(t)‖ : tk−1 < t < tk} = C·

(
γ(tk) − γ(tk−1)

)
.

Accordingly, by the Generalized Mean Value Theorem for Curves 2.4, for all k =
1, . . . , n, we have

(†) ‖f
(
γ(tk)

)
− f

(
γ(tk−1)

)
‖ ≤ ‖(f ◦ γ)′‖·(tk − tk−1) ≤ C·‖γ(tk)− γ(tk−1)‖.
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Then

‖f(b)− f(a)‖ ≤
n∑
k=1

‖f
(
γ(tk)

)
− f

(
γ(tk−1)

)
‖

(†)
≤C·

n∑
k=1

‖γ(tk)− γ(tk−1)‖

=C·L(γ) ≤ C·(d(a, b) + ε).

Since this holds for all ε > 0, we conclude

‖f(b)− f(a)‖ ≤ C·d(a, b)

as asserted. ut

Exponential curves
An example of curves that is of great theoretical interest is the example of exponen-
tial curves as we have already indicated. Let A be a Banach algebra with identity
and exp:A → A its exponential function (see 6.35). Let a ∈ A and consider the
curve t 7→ exp t·a : R→ A in A.

Lemma 2.11. For all elements a in a Banach algebra A, the curve t 7→ exp t·a :
R→ A is differentiable and its derivative is d exp t·a

dt

∣∣∣
t=t0

= a exp t0·a = (exp t0·a)a.

Proof . We compute exp(t0 + h)·a − exp t0·a = exp a(exph·a − 1) = (exph·a −
1) exp a. Now we assume 0 < |h| ≤ 1 and note ‖h−1(exph·a − 1) − a‖ =
‖ h2!a

+ · · · ‖ ≤ |h|( 1
2‖a‖

2 + 1
3!‖a‖

3 + · · ·) = |h|(e‖a‖ − 1 − ‖a‖) → 0 for 0 6= h → 0.
It follows that limh→0

h6=0

1
h (exp(t0 + h)·a− exp t0·a) = a exp t0·a = (exp t0·a)a. ut

Let V be a finite dimensional normed vector space such as V = R
n or V = C

n

and let L:V → V be a linear map. In the Banach algebra A
def= Hom(V, V )

equipped with the operator norm (see 6.34). Fix a vector t0 and a real number t0.
Define a function x:R → V by x(t) = (exp(t − t0)·L)x0. Using Lemma 2.20 we
quickly see that ẋ(t) = limh→0

h6=0
h−1·

(
x(t+h)−x(t)

)
= (L exp(t−t0)·L)x0 = Lx(t).

Also, we note that x(t0) = x0. Thus we have the following observation which we
shall improve presently:
Remark. Assume that V is a finite dimensional normed vector space. If
x0 ∈ V , then the curve

x: I → V, x(t) = (exp(t− t0)L)x0

is a solution of the initial value problem

ẋ(t) = Lx(t), x(t0) = x0.
ut

Rectifiable curves
Let f : [a, b] → X be a curve in a metric space X, and let x0 = a, x1, . . . , xn = b
be a finite subdivision of the interval. Then F = {x0, . . . , xn} is a finite subset
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of [a, b], and conversely, every finite subset F of [a, b] containing {a, b} determines
uniquely such a subdivition. If X is a Banach space V with d(x, y) = ‖y − x‖, we
can define uniquely a piecewise affine curve fF : [a, b]→ V such that

fF (t) =
{
f(a), if t = a,
f(xk−1) + t−xk−1

xk−xk−1
·
(
f(xk)− f(xk−1)

)
, if xk−1 < t ≤ xk, k = 1, . . . , n.

Figure 2.4

But even in a metric space we can define

L(f)F =
n∑
k=1

d
(
f(xk−1), f(xk)

)
.

In the case of a piecewise affine function this agrees with our previous notion of
arc length: L(f)F = L(fF ).

Lemma 2.12. If {a, b} ⊆ F ⊆ G ⊆ [a, b] are two finite sets then L(f)F ≤ L(f)G.

Proof . Exercise E2.6. ut

Exercise E2.6. Prove Lemma 2.12.
[Hint. Let x0 < · · ·xn denote the elements of G and let k0 = 0 < k1 < · · · <
kp = n be such that {xk0 , xk1 , . . . , xkp} = F . By the triangle inequality and
an iterated application of it where necessary, show that d

(
f(xkj−1), f(xkj )

)
≤∑kj

m=kj−1+1 d
(
f(xm−1), f(xm)

)
, and show that this leads to a proof of the claim.]

Thus if F = F [a, b] denotes the set of all finite subsets of [a, b] containing {a, b},
then the function F 7→ L(f)F : F → R

+ is increasing in the sense that F ⊆ G in
F implies L(f)F ≤ L(f)G.

Definition 2.13. A curve f : [a, b]→ V in a metric space X is called rectifiable, if
the set {L(f)F : F ∈ F} is bounded in R+. If f is rectifiable, then the nonnegative
number

L(f) def= sup{L(f)F : F ∈ F}
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is called the arc length of f . ut

In view of the Characterisation Theorem for Sups 1.30, as an immediate con-
sequence of the Definition we have the following

Lemma 2.14. Let f : [a, b]→ X be a rectifiable curve. Then for each ε > 0 there
is a finite subset F ∈ F such that L(f)− ε < L(f)F ≤ L(f). ut

Arc length behaves additively in the right way:

Lemma 2.15. Let f : [a, b]→ X and g: [b, c]→ X be two curves in a metric space
X such that f(b) = g(c). Then we can form a new rectifiable curve f#g: [a, c]→ V
by concatenation

f#g(x) =
{
f(x) if x ∈ [a, b],
g(x) if x ∈ [b, c],

and L(f#g) = L(f) + L(g).

Proof . Exercise E2.7. ut

Exercise E2.7. Prove Lemma 2.15.
[Hint. Let F ∈ F [a, c]. Then F ∗ = F ∪ {b} ∈ F [a, c] and we know L

(
(f#g)

)
F
≤

L(f#g)F∗
)
≤ L(f#g). This shows that f#g is rectifiable. Also, L(f#g)F∗ =

L(f)F∗∩[a,b] + L(g)F∗∩[b,c] ≤ L(f) + L(g). If ε > 0 and L(f#g) − ε < L(f#g)F
for suitable choice of F by Lemma 2.14, we get L(f#g) − ε < L(f) + L(g),
whence L(f#g) ≤ L(f) + L(g). Conversely let F ∈ F [a, b] and G ∈ F [b, c],
then F ∪ G ∈ F [a, c] and L(f)F + L(g)G = L(f#g)F∪G ≤ L(f#g). Conclude
L(f) + L(g) ≤ L(f#g).]

Exercise E2.8. Prove the following
Theorem. The image of a rectifiable curve in R2 does not contain a square.
[Hint. Let f : [a, b]→ R

2 be a rectifiable curve. Suppose that f([a, b]) contains the
square Q = [A,A + h] × [B,B + h]. Find an affine map α:R2 → R

2 such that
α(Q) = [0, 1] × [0, 1]. Then F = α ◦ f has the same properties as f . Replacing
f by F , if necessary we may assuume Q = [0, 1]2. consider the set M ⊆ Q of
all points ( qn ,

p
n ), 0 ≤ q, p ≤ n. Choose a subset D = {x1, . . . x(n+1)2} of [a, b]

with xj−1 < xj , j = 2, . . . , (n + 1)2 such that f(D) = M . The length of the
arc f([xj−1, xj ]) is ≥ 1

n for j = 2, . . . , (n + 1)2 (why?). Thus the length L of the

curve satisfies the estimate L ≥ (n+1)2−1
n ≥ n. And this has to hold for all natural

numbers n. Impossible!] The space filling curves of Peano and Hilbert therefore
have no arc length.

Theorem 2.16. A curve f : [a, b] → V in a Banach space is rectifiable, if f is
differentiable on ]a, b[ and {f ′(t) : a < t < b} is bounded in V .
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Proof . Let ‖f ′‖ denote sup{‖f ′(t)‖ : a < t < b}. Let F ∈ F [a, b], say, F =
{x0, . . . , xn} with xk−1 < xk for k = 1, . . . , n. Then the Generalized Mean Value
Theorem vor Curves 2.4 implies

L(f)F =
n∑
k=1

‖f(xk)− f(xk−1)‖ ≤
n∑
k=1

(xk − xk−1)·‖f ′‖ = ‖f ′‖·(b− a)

This proves that f is rectifiable. ut

By Corollary 2.6 it suffices that f be only piecewise differentiable on ]a, b[. In
fact, if we accept the result of Exercise E2.2 we get the following

Rectifiability of Differentiable Curves

Theorem 2.17. Assume that the curve f : [a, b] → V in a Banach space is
differentiable in all inner points of [a, b] with the possible exception of a countable
subset C of ]a, b[, and assume further that {f ′(x) : x ∈ ]a, b[\C} is bounded. Then
f is rectifiable and L(f) ≤ (b− a)·‖f ′‖, ‖f ′‖ = sup{‖f ′(x)‖ : x ∈ ]a, b[ \ C}. ut

We can draw some additional conclusions on the rectifiability of curves in metric
spaces which we do in the following.

Two curves fj : [aj , bj ]→ X, j = 1, 2 are called equivalent , if there is a strictly
isotone surjective function σ: [a1, b1]→ [a2, b2] such that f1 = f2 ◦ σ.

Definition. An equivalence relation R on a set X is a binary relation R ⊆ X×X
which is reflexive (∀x ∈ X)xRx), symmetric (∀x, y ∈ X) (xR y)⇔(y R y)), and
transitive (∀x ∈ X

(
(xR y) ∧ (y R z)

)
⇒(xR z)). ut

Exercise E2.9. Show that the binary relation which we have defined on the set
of all curves in a fixed metric space X is indeed an equivalence relation.

If T1 = {t10, . . . , t1n} is a finite partition a1 = t10 < · · · < t1n = b1 of [a1, b1],
then T2 = σ(T1) is a finite partition {a2 = t20, . . . , t2n} of [a2, b2] such that t2,j =
σ(t1,j) for j = 1, . . . , n. Thus T1 7→ σ(T1) is a bijection from the set of finite
partitions of [a1, b1] onto the set of finite partitions of [a2, b2]. The numbers

L(T1; f1) def=
n∑
j=1

d
(
f1(t1(j−1)), f1(t1j)

)
and

L(T2; f2) def=
n∑
j=1

d
(
f2(t2(j−1)), f1(t2j)

)
are equal. Therefore f1 is rectifiable if and only if f2 is rectifiable, and the arc
lengths of equivalent curves are equal. One way of expressing this fact is saying
that the arc length of a rectifiable curve is independent of its parametrisation.

For a rectifiable curve f : [a, b]→ X in a metric space, the restriction

f |[a, x]: [a, x]→ X, (f |[a, x])(t) = f(t) for t ∈ [a, x]
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is rectifiable as well, and we may define S(a, x) = L(f |[a, x]). If no confusion is
possible, we shall abbreviate S(a, x) by S(x).

Theorem 2.18. (i) For a rectifiable curve f : [a, b] → X in X, the function
S = S(a, ·): [a, b]→ [0, L(f)] is an isotone function which satisfies the relation

(∗) (∀a ≤ x < y < z ≤ b) S(x, z) = S(x, y) + S(y, z).

(ii) S: [a, b]→ [0, L(f)] is continuous.
(iii) The curve f is constant on no proper subinterval iff the arc length func-

tion S: [a, b] → [0, L(f)] is injective and thus is bijective and has and inverse
function.

Proof . The proof of (i) is an exercise. Next we prove (ii). Suppose that (ii) fails,
then by (i) and Proposition 3.54 of Analysis I, f has a jump. Suppose f has a
jump at b; other cases are treated similarly. Then s

def= sup{S(t) : t < b} < S(b).
Let ε = S(b)−s

2 . Then

(a) (∀a ≤ t < b)S(t) ≤ S(b)− 2ε.

By Lemma 2.14, there is a partition T = {x0 = a < t1 < · · · < tn = b} such that

(b) S(b)− ε < L(f)T .

Because of the continuity of f , we may assume that d
(
f(tn−1), f(b)

)
< ε, for

we may always add a partition point t < b such that d
(
f(t), f(b)

)
< ε, thereby

refining the partition without violating (b). Now

L(f)T − ε <
n∑

m=1

d
(
f(tm), f(tm−1)

)
− d
(
f(tn−1), f(b)

)
=
n−1∑
m=1

d
(
f(tm), f(tm−1)

)
≤ S(a, tn−1) (by definition of S(a, tn−1))

≤S(a, b)− 2ε (by (a)),

whence

(c) L(f)T < S(a, b)− ε.

Now (b) and (c) imply S(a, b)− ε < L(f)T < S(a, b)− ε, a contradiction.
(iii): Let t1 < t2. In view of S(t2) = S(t1) + S(t1, t2) we have S(t1) < S(t2)

iff S(t1, t2) > 0 iff there is a partition t1 = r0 < r1 < · · · < rn = t2 such that
0 < d(f(r0), f(r1)) + · · · + d(f(rn−1), f(rn)) by the Characterisation Theorem
of Sups 1.30. This implies the existence of elements t1 < t′1 < t′2 < t2 such
that f(t′1) 6= f(t′2); conversely, if such t′1, t

′
2 exist, then S(t1, t2) ≥ S(t′1, t

′
2) ≥

d(f(t′1), f(t′2)) > 0. This proves the main assertion of (iii); since S is surjective by
(ii) and the Intermediate Value Theorem 3.17 of Analysis I, the existence of an
inverse function of S is equivalent to the injectivity of S. ut
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It is often useful to reparametrize a given curve. This is particularly true if arc
length is used as a new parameter. By this we mean the following. If f : [a, b]→ X
is a rectifiable curve in a metric space E, then the arc length S(a, ·): [a, b]→ [0, L] is
a continuous nondecreasing surjective function by Theorem 2.18. In the following
lemma we derive a few relevant facts of functions with these properties; this lemma
only deals with functions between real compact intervals.

Lemma 2.19. Let σ: [a, b]→ [0, L] be a continuous isotone and surjective function
between real compact intervals. Define

(19) τ : [0, L]→ [a, b], τ(s) = min{t ∈ [a, b] : s ≤ σ(t)} = minσ−1(s).

Then τ is strictly isotone and has the following properties
(i) σ

(
τ(s)

)
= s for all s ∈ [0, L] and τ

(
σ(t)

)
≤ t for all t ∈ [a, b].

(ii) τ is continuous from the left, that is τ(s) = sup{τ(s′) : 0 ≤ s′ < s}.
(iii) For all s ∈ [0, L] we have τ+(s) − τ(s) = maxσ−1(s) − minσ−1(s). In par-

ticular, the function τ has a nonzero jump in a point s precisely when σ−1(s)
is a nondegenerate interval. In particular, if σ is not constant on any nonde-
generate interval, then τ is the inverse function of σ.

Proof . Assertion (i) and the fact that τ is strictly isotone are direct consequences
of the definition of τ .

(ii) Let 0 ≤ t1 < τ(s). Then s1
def= σ(t1) ≤ σ(τ(s)) = s. Then τ(s1) ≤ t1 < τ(s)

by (i), whence s1 < s. Now let s1 < s′ < s. Then t1 < τ(s′), because τ(s′) ≤ t1
would imply s′ = σ(τ(s′)) ≤ σ(t1) = s1, a contradiction. This implies (ii).

(iii) The assertion is tantamount to t def= maxσ−1(s) = inf{τ(s′) : s < s′}. Let
t < t′ < t1 then s = σ(t) ≤ σ(t′) def= s′ ≤ σ(t1); now t ≤ τ(s′) ≤ τ

(
σ(t1)

)
≤ t1.

This proves the first assertion; the remaining ones are immediate. ut

Now we prove the reparametrisation theorem via arc length.

Theorem 2.20. (Reparametrisation Theorem for Curves by Arc Length) Let
f : [a, b] → X be a rectifiable curve in a metric space. Let S: [a, b] → [0, L(f)] be
the arc length S(t) = L(f |[a, t]) of f . Set τ(s) = minS−1(s) for s ∈ [0, L]. Define
F : [0, L]→ X by F (s) = f(τ(s)). Then
(i) F is a rectifiable curve such that f(t) = F (S(t)) and F ([0, L(f)]) = f([a, b]).
(ii) The arc length of F is L(F |[0, s]) = s for all s ∈ [0, L(f)]. In particular, F is

not constant on any nondegenerate interval of its domain.
(iii) If f is not constant on any subinterval of its domain, then f and F are

equivalent curves.

Proof . (i) By 2.18(ii) for each 0 < s ≤ L we have lims′→s, s′<s F (s′) = F (s). and
by 2.18(iii) we know lims′→s, s<s′ F (s′) = f(t+) where t+ = maxS−1(s) However,
S(t+) = S(τ(s)) and this equation implies f(t+) = f(τ(s)) = F (s). This proves
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continuity of F . Now let t ∈ [a, b]. Then f(t) = f(τ(S(t)) = F (S(t)) by the
definition of τ . The relation F ([0, L]) = f([a, b]) is trivial from the definition of F .

(ii) Let 0 = s0 < s1 · · · < sn = L be a partition of [0, L]. Set tk = τ(sk). Then
d(F (sk−1), F (sk)) = d(f(tk−1, tk)) = S(tk−1, tk) = S(tk) − S(tk−1) = sk − sk−1.
Thus

∑n
=1 d(F (sk−1), F (sk)) = sn−s0 = L. Hence F is rectifiable, and the overall

arc length of F is SF (0, L) ≤ L. Now let t0 = a < t1 · · · < tN = b be a partition of
[a, b]. Since f(tk−1) = f(tk) implies d(f(tk−1, f(tk)) = 0 we assume that S(tk−1) <
S(tk) for all k = 1, . . . N . Furthermore, f(tk) = f(τ(S(tk))) by the definition of τ .
Now set sk = S(tk). Then a = s0 < · · · < sN = L and

∑N
k=1 d(f(tk−1), f(tk)) =∑N

k=1 d(f(τ(sk−1)), f(τ(sk))) =
∑N
k=1 d(F (sk−1), F (sk)) ≤ SF (0, L). By the def-

inition of L as the sup over the sums on the left side of the inequality we obtain
L ≤ SF (0, L). Since this argument holds for each s ∈ [0, L] in place of L we have
SF (0, s) = s.

(iii) If f is not constant on any proper subinterval of [a, b], then S is injective by
Theorem 2.18(iii), and τ is the inverse function of S. In particular, it is continuous.
Hence the relations F (s) = f(τ(s)) and f(t) = F (S(t)) show the equivalence of
the two curves. ut

This theorem shows that every rectifiable curve in a metric space can be re-
parametrized in terms of its arc length.

We emphasize that we have considered curves in arbitrary metric spaces with
the sole exception of the existence theorems 2.16 and 2.17 of arc length for differ-
entiable curves in Banach spaces.

In particular, we can always observe that the function S: [a, b] → [0, L] ⊆ R
is differentiable in x ∈ [a, b] if and only if limh→0

h6=0

1
h

(
S(a, x+ h)− S(a, x)

)
exists,

that is iff the following limits exist and agree:

lim
h→0
h>0

S(x, x+ h)/h, lim
h→0
h>0

S(x− h, x)/h.

However, in order to link rectifiability and differentiability more profoundly, we
assume that we have a curve f : [a, b] → E in a Banach space—or the very least
in a metric space X contained in a Banach space E. Then we are ready for the
second fundamental theorem on rectifiable curves.

Second Fundamental Theorem on Arc Length

Theorem 2.21. Let f : [a, b] → E be a curve in a Banach space, which is
differentiable on ]a, b[. Assume that the set of nonnegative real numbers {‖f ′(t)‖ :
a < t < b} is bounded. Then the following conclusions hold.
(i) f is rectifiable.
(ii) The arc length S(a, t) satisfies

(20)
∫
-
b
a‖f ′(t)‖dt ≤ S(a, t) ≤

∫-b
a
‖f ′(t)‖dt.
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(iii) If t 7→ ‖f ′(t)‖ is integrable, then

(21) S(a, t) =
∫ t
a
‖f ′(τ)‖dτ =

∫ t
a
‖f ′(·)‖.

(iv) If ‖f ′‖ is continuous, then S is differentiable and dS(a,τ)
dτ

∣∣∣
τ=t

= ‖f ′(t)‖.

Proof . (i) For a given partition T = {t0, . . . , tp} of [a, b] we define a step function
sT whose value on ]tk−1, tk[ for k = 1, . . . , p is exactly sup{‖f ′(t)‖ : tk−1 < t < tk}
and for all tj we set s(tj) = sup{‖f ′(t)‖ : a < t < b}. Then

(22) ‖f ′(t)‖ ≤ sT (t) for all t ∈ ]a, b[ .

By the Generalized Mean Value Theorem for Curves 2.4 we have

(23) ‖f(tk)− f(tk−1)‖ ≤ (tk − tk−1)·sT (τk), tk−1 < τk < tk.

Thus

(24) L(T ) =
p∑
k=1

‖f(tk)− f(tk−1)‖ ≤
p∑
k=1

(tk − tk−1)·sT (τk) =
∫ b
a
sT .

If now T1 ⊆ T2 are two partitions of [a, b], then one notices immediately that
sT2 ≤ sT1 and that therefore

L(T1) ≤ L(T2) ≤
∫ b
a
sT2 ≤

∫ b
a
sT1 .

If we fix a partition T , then
∫ b
a
sT is an upper bound for the set of all L(T ′) for

partitions T ′ refining T . The least upper bound of this set therefore exists by the
Least Upper Bound Axiom 1.31, see 1.50. This least upper bound is S(a, b). Thus

(25) S(a, b) ≤
∫ b
a
sT for all partitions T.

(ii) Now let s be a step function on [a, b] and T an associated partition (cf.
definition following 5.1 in Analysis I). If ‖f ′(t)‖ ≤ s(t) for all t, then sT ≤ s by the
definition of sT (with the possible exception of the points of the partition). From
(25) we conclude S(a, b) ≤

∫ b
a
sT ≤

∫ b
a
s. Hence, if M denotes the set of all step

functions s: [a, b]→ R satisfying (∀t ∈ ]a, b[) ‖f ′(t)‖ ≤ s(t) we get

S(a, b) ≤ inf{
∫ b
a
s : s ∈M} =

∫-b
a
‖f ′(·)‖ =

∫-b
a
‖f ′(τ)‖ dτ.

Now we have to prove
∫
-
b
a‖f ′(·)‖ ≤ S(a, b). For this purpose let s: [a, b] → R

be a step function with s(t) ≤ ‖f ′(t)‖ for all t ∈ [a, b] and let T be a partition
associated with s. We denote by sk the value of s on ]tk−1, tk[ and claim that
(tk−tk−1)sk ≤ S(tk−1, tk); if this claim is proved, then

∫ b
a
s =

∑p
k=1(tk−tk−1)sk ≤∑p

k=1 S(tk−1, tk) = S(a, b). Therefore S(a, b) is an upper bound for the set of all of
these real numbers

∫ b
a
s; the least upper bound of this set, however, is

∫
-
b
a‖f ′(t)‖ dt;

this will prove assertion (iii).
It all boils down to proving the following
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Claim. If r ≤ ‖f ′(t)‖ for all t ∈ [a, b], then (b − a)r ≤ S(a, b). For r = 0 we
have nothing to show. Thus let now be r > 0 and ε > 0. If t ∈ ]a, b[ then, since f
is differentiable at t, there is a δt > 0 such that for all τ ∈ [a, b] mit 0 < |t−τ | < δt
we have ‖ 1

τ−t
(
f(τ)− f(t)

)
− f ′(t)‖ < ε, and so

(26) ‖f(τ)− f(t)‖ ≥ |τ − t|·‖f ′(t)‖ − |τ − t|ε ≥ |τ − t|(r − ε).

Now we define

(27) I = {t ∈ [a, b] : (∀s ∈ [a, t]) (s− a)(r − ε) ≤ S(a, t)}.

Then I is an interval containing a and being bounded above by b. Set b′ = sup I.
Then a ≤ s1 < s2 < . . . < b′ and b′ = limn→∞ sn, as S(a, ·) is isotone, implies
(sn − a)(r − ε) ≤ S(a, sn) ≤ S(a, b′) and thus also

(28) (b′ − a)(r − ε) ≤ S(a, b′).

Thus b′ ∈ I by (27). We claim b′ = b. Suppose not. Then b′ < b and we find a
τ ∈ ]b′,min{b′ + δb′ , b}[; for this τ > b′ we have (τ − b′)(r− ε) ≤ ‖f(τ)− f(b′)‖ by
(26). From this relation and (27) we conclude (τ − a)(r − ε) = (b′ − a)(r − ε) +
(τ − b′)(r − ε) ≤ S(a, b′) + S(b′, τ) = S(a, τ). By (27) this means τ ∈ I, whence
τ ≤ sup I = b′, a contradiction to b′ < τ . This proves the claim and thus the proof
of (ii) is complete.

(iii) By the definition, the function ‖f ′(·)‖: [a, b]→ R integrable iff
∫
-
b
a‖f ′(·)| =∫-b

a
‖f ′(·)| by 5.11(ii), and this implies

∫
-
t
a‖f ′(·)| =

∫-t
a
‖f ′(·)| for all t ∈ [a, b] (cf.

5.16 and the discussions leading to 5.16). Hence (ii) implies (iii).
(iv) follows from (iii) by the Fundamental Theorem of Differential and Integral

Calculus 5.18. ut

The preceding theorem persists if the differentiability hypotheses on the curve
f are satisfied only piecewise, that is, if there is a partition T = {t0, . . . , tp} of the
domain [a, b] of f that f ′ exists and is bounded on each of the intervals ]tk−1, tk[.

Exercise E2.10 Prove the following result.
Theorem. The circumference of a circle of radius r is 2πr.

In particular, the circumference of the unit circle S1 is 2π.
[Hint. In the euclidean plane, that is R2 equipped with the euclidean norm ‖·‖2,
we consider the differentiable curve f(t) = (m1 + r cos t,m2 + r sin t). The circle
of radius r around the point M = (m1,m2) is f([0, 2π]), and the circumference
of this circle is defined to be the arc length S(0, 2π) for f . We note f ′(t) =
(−r sin t, r cos t) and ‖f ′(t)‖ = r. Thus S(0, θ) =

∫ θ
0
r = θr. With θ = 2π, the

assertion follows.]
This theorem provides us with the second geometric interpretation of the num-

ber π as the arc length of the unit semicircle; the first one was Corollary 5.44
showing that the area of the unit disk is π. The definition of the number π was
given in 3.34.
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Exercise E2.11. Use the ideas of the preceding exercise to prove:
Theorem. Consider the complex absolute value as norm on C. Then the arc
length of the curve t 7→ exp it: [0, θ]→ C for 0 ≤ θ ≤ 2π is θ.

This observation allows us to corroborate our theory of the concept of an angle
in 3.39 ff. in Analysis I, because by the preceding theorem and 3.39 we have
arg0(exp iθ) = θ is the arc length of the arc t 7→ exp it : [0, θ] → C on the unit
circle S1.

Parametrizing curves in terms of arc length revisited
In the First Fundamental Theorem on Arc Length we have seen that it is (often)
possible to reparametrize a given curve in terms of arc length: For any rectifiable
curve f the curve F = f ◦ τ is well defined, and the arc length of the curve F
measured from F (0) to F (s) is s. Of course, the arc length function of F , being
given by SF (s) = s is differentiable with derivative 1 in all points.

Theorem 2.22. If f : [a, b]→ E is a continuously differentiable curve in a Banach
space, then the following conclusions hold in the terminology of 2.17 and 2.19
(i) If f is constant on no nondegenerate interval of [a, b] then the curves f and

F are equivalent.
(ii) Let I = {s ∈ [0, L] : f ′

(
τ(s)

)
6= 0}. Then in all points s ∈ I the curve F is

differentiable and ‖F ′(s)‖ = 1.
(iii) f ′(t) = ‖f ′(t)‖·F ′

(
S(a, t)

)
whenever f ′(t) 6= 0.

In particular, if f ′(t) 6= 0 for all t ∈ [a, b], then F is differentiable for all s ∈ [0, L]
and ‖F ′(s)‖ = 1.

Proof . Since f : [a, b]→ E is a continuously differentiable curve in a Banach space
E, the continuous function t 7→ ‖f ′(t)‖ is bounded on [a, b] by the Theorem of
the Maximum 3.52 in Analysis I. Then, by 2.21(i) the curve is rectifiable and
S(t) =

∫ t
a
‖f ′(.)‖, S′(t) = ‖f ′(t)‖.

(i) is 2.21(iii).
(ii) If f ′(t) 6= 0, then the inverse function τ : [0, L] → [a, b] is differentiable

in s = S(t) and τ ′(s) = S′(τ(s))−1 = ‖f ′(τ(s))‖−1 by 4.19. of Analysis I. We
claim that an appropriate Chain Rule applies readily to the composition of the
functions τ : [0, L]→ [a, b] and f : [a, b]→ E, and yields that the function F = f ◦ τ
is differentiable in such a point s and that

F ′(s) = lim
s′→s
s′ 6=s

1
s′ − s

(
F (s′)− F (s)

)
= lim

s′→s
s′ 6=s

τ(s′)− τ(s)
s′ − s

·
(

1
τ(s′)− τ(s)

·
(
f
(
τ(s′)

)
− f

(
τ(s)

))
=τ ′(s)·f ′

(
τ(s)

)
.

Then ‖F ′(s)‖ = τ ′(s)·‖f ′(τ(s))‖ = 1 since τ ′(s) ≥ 0. Setting t = τ(s) implies
(iii). ut
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� The condition that f is not constant on any nondegenerate interval does
not suffice for f ′(t) to be nonzero for all t ∈ [a, b]. In fact, f ′(t) may still

vanish on an uncountable set. (See E5.12 in Analysis I.)
We deduced an appropriate Chain Rule for the special situation; the conclusive

form of the Chain Rule will be presented in Chapter 3.
If we assume that f ′(t) 6= 0 for all t ∈ [a, b], then in the sense of (i) and (ii), F

describes the same curve as f . Statement (iv) says, that the norm of the velocity
vector of F at f(t) = F (s) where f ′(t) 6= 0 is 1. Notice that a differentiable
curve F : [0, L]→ E is parametrized by arc length if and only if ‖F ′(s)‖ = 1 for all
s ∈ [0, L]. In this case, in a model representing the “motion” of a point in space, the
point moves with uniform speed equal to 1, and F ′(s) tells us the direction of the
velocity in the point F (s). If F ′: [0, L]→ E itself is continuous, then the velocity
vector F ′(s) runs through a curve on the surface Sn−1 = {x ∈ E : ‖x‖ = 1} of the
unit ball; this curve is sometimes called the directional curve of the given curve.

Higher derivatives of curves
We have immediate access to geometrically interesting aspects of the theory of differentiable

curves. In a first overview of this theory the reader may jump to the next section.

If we have a curve f : [a, b] → R
n it is not hard to interpret higher derivatives, because

differentiating happens componentwise. So let us consider a curve f : [a, b] → E which is twice

differentiable, where we interpret f ′(t) as an element of E as usual and thus obtain a function
f ′: [a, b] → E which we assume to be differentiable. In particular, f ′: [a, b] → E a is a gain

a curve in E the velocity curve, which, in case that f happened to be parametrized by arc

length, is exactly the directional curve. The second derivative f ′′(t) is a measure for the rate
of change of the velocity f ′ at time t, and this rate of change is called acceleration. In the

case of a curve F : [0, L] → R
n, which is parametrized by arc length and is twice differentiable,

F ′′(s) represents the rate of change of the directional curve at s. This rate of change is evidently

0 if F (s) = v + s·e with a unit vector e, that is if the motion is straight and uniform with

speed 1. On the other hand, if we are in a Hilbert space and e1 and e2 are two perpendicular
unit vectors, then F (s) = (r cos sr )·e1 + (r sin s

r )·e2 is a circular motion with radius r; then

F ′(s) = (− sin s
r )·e1 + (cos sr )·e2 and F ′′(s) = − 1

r ·
(
(cos sr )·e1 + (sin s

r )·e2 = − 1
r2 ·F (s). The

bigger the radius r the smaller ‖F ′′(s)‖ = 1
r . Therefore ‖F ′′(s)‖ is called the scalar curvature

of the curve at the point x = F (s), and we write k(x)
def
= ‖F ′′(s)‖. We might call F ′′(s) itself

the curvature vector, it contains directional information,too.
If f : [a, b] → E is a twice differentiable curve with f ′(t) 6= 0 for all t, then we would like to

know the curvature k
(
f(t)
)
. We set F = f ◦ τ with the inverse function τ : [0, L] → [a, b] of the

arc length t 7→ S(a, t) : [a, b]→ [0, L] and assume through the remainder of this subsection that
E is a Hilbert space whose norm is given via an inner product by ‖x‖2 = (x|x). We shall need

the radial derivative, that is, the derivative of t 7→ ‖f(t)‖: [a, b]→ R. Since(
(f(t+ h) | f(t+ h)

)
−
(
f(t)|f(t)

)
=
(
f(t+ h)− f(t) | f(t)

)
+
(
f(t+ h) | f(t+ h)− f(t)

)
,

the function ϕ: [a, b] → R, ϕ(t) =
(
f(t) | f(t)

)
is differentiable and satisfies ϕ′(t) = (f ′(t) |

f(t)
)

+
(
f(t) | f ′(t)

)
= 2
(
f(t) | f ′(t)

)
. (A conclusive form of the Product Rule will be given

below in Chapter 3. This together with the Chain Rule derived in the last portion of the proof
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of part (ii) of Theorem 2.21 yields

(29)

d

dt

∣∣∣
t=t0

‖f(t)‖ =
d

dt

∣∣∣
t=t0

(
f(t) | f(t)

)1/2
=

d

dt

∣∣∣
t=t0

ϕ(t)1/2 =
ϕ′(t)
2ϕ(t)

=
(
‖f(t0)‖−1·f(t0) | f ′(t0)

)
.

This gives us the projection of the velocity vector f ′(t0) onto the straight line spanned by the

unit vector ‖f(t0)‖−1·f(t0) of the position vector f(t0). We have assumed f ′(t) 6= 0 and consider
the speed v: [a, b]→ R, v(t) = ‖f ′(t)‖ and its derivative b(t) = v′(t), the scalar acceleration which

by (29) is given by

(30) b(t) = v′(t) =
(
‖f ′(t)‖−1·f ′(t) | f ′′(t)

)
=
(
F ′
(
S(a, t)

)
| f ′′(t)

)
,

the projection of the acceleration vector f ′′(t) onto the direction vector F ′
(
S(a, t)

)
of the velocity

at time t. We now start from the relation v
(
τ(s)
)
·F ′(s) = f ′

(
τ(s)
)

and differentiate with respect
to arc length. We find

v′
(
τ(s)
)
τ ′(s)·F ′(s) + v

(
τ(s)
)
·F ′′(s) = τ ′(s)·f ′′

(
τ(s)
)
.

We have τ ′(s) = v
(
τ(s)
)−1

in view of the definition of v and the derivative of τ which we

computed earlier. From (30) we get v′
(
τ(s)
)

=
(
F ′(s)|f ′′

(
τ(s)
))

and obtain

(31)
(
F ′(s)|f ′′

(
τ(s)
))
·F ′(s) + v

(
τ(s)
)2
·F ′′(s) = f ′′

(
τ(s)
)
.

We recall that f ′ and f ′′ are directly accessible to us while we are looking for F ′′
(
S(a, t)

)
. Hence

we solve the equation (41) for v(t)2·F ′′
(
S(a, t)

)
= f ′′(t) −

(
F ′(S(a, t)

)
|f ′′(t)

)
·F ′
(
S(t)
)
. We

abbreviate the known direction vector F ′
(
S(t)
)

= v(t)−1f ′(t) of the velocity by e(t). Thus for

the desired curvature vector F ′′
(
S(t)
)

we obtain the relation

(32) v(t)2F ′′
(
S(a, t)

)
= f ′′(t)−

(
e(t)|f ′′(t)

)
·e(t),

the acceleration minus the projection of the acceleration onto the direction of the velocity. The
square of the norm of the right side is (f ′′|f ′′) − 2(f ′′|e)2 + (e|f ′′)2 = ‖f ′′‖2 − (f ′′|e)2, which

yields the curvature in the point x = f(t) = F
(
S(a, t)

)
as

(33) k
(
x
)

= v(t)−2(‖f ′′‖2 − (f ′′|e)2)1/2,

where we abbreviated f ′′(t) by f ′′ and v(t)−1f ′(t) by e. The relation
(
F ′(s)|F ′(s)

)
= 1 for all

s ∈ [0, L], upon differentiating yields the equation 0 = 2
(
F ′(s)|F ′′(s)

)
, that is

(
F ′′(s)|F ′(s)

)
=

0. The curvature vector is orthogonal to the direction vector. If we set H(s) = ‖F ′′(s)‖−1·F ′′(s),
then the pair

(
F ′(s), H(s)

)
is an orthonormal 2-frame.

The Taylor expansion of a function has taught us that a function g: I → R on an interval

I of real numbers is twice differentiable in a point a if we have a representation g(a + h) =

g(a) + hg′(a) + h2

2 g
′′(a) + h2R(h) such that limh→0 R(h) = 0. In a completely analogous way,

for our curves in Hilbert space we have a representation

(34) F (s+ h) = F (s) + hF ′(s) +
h2

2
F ′′(s) + h2R(h) lim

h→0
R(h) = 0.
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Indeed for E = R
n this is an immediate consequence from the scalar version of Taylor’s Theorem;

for the case of a Banach space E we leave the proof as an exercise. We shall address Taylor’s

Theorem in greater detail below.

If F ′′(s) 6= 0, then we set ρ(s) = k(s)−1 = ‖F ′′(s)‖−1. This allows us to write the expansion
(34) in the following form:

F (s+ h)− F (s) = h·F ′(s) +
h2

2ρ(s)
·H(s) + h2R(h) lim

h→0
R(h) = 0.

Up to a remainder h2R(h) which is small “of the third order,” in the vicinity of F (s) the curve
is “contained in” the plane which is spanned by F ′(s) and H(s). It is called the osculating
plane of the curve at F (s). If we describe the points of the osculating plane via the bijection

(x, y) 7→ x·F ′(s) + y·H(s), then the image under this bijection of the graph of the function
x 7→ x2/2ρ(s) is very close to the trajectory of the curve near F (s). We compare The parabola

with the equation y = x2/2ρ(s) with the circle with center
(
0, ρ(s)

)
) and radius ρ(s), that is,

with the circle defined by the equation x2 +
(
y − ρ(s)

)2
= ρ(s)2. Write r = ρ(s) for short. The

lower semicircle is the graph of the function x 7→ y(x) = r−
√
r2 − x2 = r(1−(1−(x/r)2)1/2) =

r
(
1 − (

∑∞
n=0(

(
1/2
n

)
)(x/r)2n)

)
= x2

2r + x4

8r3 − + . . . (for |x| < r). The difference between the

parabola and the circle is of order 4 and thus is extremely small near 0. One expresses this fact

by saying that the parabola has at 0 the circle which we have constructed as osculating circle.
Therefore we can now call the circle

{F (s) + x·F ′(s) + y·H(s) : x2 +
(
y − ρ(s)

)2
= ρ(s)2}

as the osculating circle of the curve at f(t) = F (s), s = S(a, t), and call its radius ρ(s) =
‖F ′′(s)‖−1 = k(x)−1 as the radius of curvature of the curve at x = F (s). The radius of
curvature and the curvature are reciprocals of each other.

If the curve F is three times differentiable, then the curve H: [0, L] → E is defined, as
soon as we assume that the second derivative F ′′ vanishes nowhere. Then the curve H is itself
differentiable, and because of

(
H(s)|H(s)

)
= 1 the vectors H(s) and H′(s) are perpendicular.

We also have
(
H(s)|F ′(s)

)
= 0 and

(
H′(s)|F ′(s)

)
= −k(x), x = F (s). Thus the vector

H′(s) + k(x)F ′(s) is orthogonal to H(s) as well as F ′(s) and therefore measures the rotation of
the osculating plane about the axis spanned by F ′(s); this means the turning of the curve out
of its osculating plane. The norm of this vector therefore is called the torsion of the curve.

In the euclidean space R3, some things become simpler due to the serendipity of special
geometrical properties attached to dimension three. One such fortuitous concept is the vector
product (u, v) 7→ [u, v] on R3, where formulae such as

‖[u, v]‖2 = ‖u‖2‖v‖2 − (u|v)2

help to simplify formulae like (33).


