
Reading the Follwing Chapter on Norms

Our present strategy in Analysis II is to develop a theory of differentiation
simultaneously for functions of one real or complex variables and for vector valued
functions of several variables. For this purpose we need all the linear algebra you
have learned in Linear Algebra I; but we need a perhaps deeper understanding
of norms than you have considered so far. The following pages should help you
to refresh your memory on some vector space theory and to have before you the
relevant facts on norms.

These notes include some references to vector spaces of functions and among
these vector spaces of functions of Riemann integrable functions. We shall discuss
Riemann integration after our discussion of the theory of differentiability. Accord-
ingly, in your reading of the material now you may defer such references as e.g.
in 1.2(iv)–(vi) and 1.6(iii); if you wish, you may also skip for now the subsec-
tion entitled “Complete metric spaces and Banach spaces” from 1.8 to 1.11. The
subsections on “Hilbert spaces” and “the geometry of real inner product spaces”
comprising 1.15–1.23 is a recall of what you saw in Linear Algebra and is perhaps
a good application of what you learned in Analysis I about angles in the context
of the complex exponential function.

Important reading, however, is the subsection on “Finite dimensional normed
vector spaces”, on “Linear maps”, on “Linear forms”, and on the “Continuity of
linear maps” from 1.24 to 1.31, and do read 1.12 and 1.13. Also the subsection
on “The operator norm” contains material we need if we want to define the expo-
nential function on spaces of matrices (1.32–1.35). You will see that the material
on finite dimensional real or complex vector spaces links nicely with what we have
said on compact metric spaces and the Bolzano-Weierstraß Theorem.

All section numbers occuring in the text which do not refer to number in this
Chapter refer to the orange book (Analysis I).



Chapter 1
Normed Vector Spaces

1. Normed Vector Spaces

We need background information on vector spaces such as it is provided in the
courses on linear algebra. Therefore we have to borrow information from that line
of mathematical investigation. In particular, we need here the theory of normed
vector spaces; we will recall the most salient features of norms, because it is the
norms that provide us with the metrics we need. In the standard introductory
courses on linear algebra, not all the facts on normed vector spaces are introduced
ot the extend they are needed in the calculus of several variables. We shall em-
phasize the connections between linear algebra and analysis by discussion relevant
applications right away. A restriction to finite dimensional vector spaces would be
counterproductive; however, many applications do pertain to spaces like Rn and
C
n. We rely on the fact that the theory of vector spaces is developed from axioms,

with a start out of set theory, in the same spirit as we developed analysis.

Norms on Vector Spaces
The theory of norms is the link between the theories of vector space and the theory
of metric spaces. Inevitably, we have to discuss normed vector spaces it at this
point.

For the sake of completeness we recall the definition of a vector space over a
field K which in our situation will always be either the field R of real numbers or
the field C of complex numbers.

Definition 1.1. A vector space V over a field K is a set endowed with an addition
(x, y) 7→ x + y:V × V → V and a scalar multiplication (r, x) 7→ r·x:K × V → V
such that the following axioms are satisfied:

ADD

(V,+) is a commutative group, that is, the axioms ADD of 1.37 are satisfied:

(C) (∀x, y ∈ K) x+ y = y + x (Commutativity)
(A) (∀x, y, z ∈ K) (x+ y) + z = x+ (y + z) (Associativity)
(N) (∃0 ∈ K)(∀x ∈ K) 0 + x = x+ 0 = x (Neutral Element)
(I) (∀x ∈ K)(∃y ∈ K) x+ y = y + x = 0 (Inverse elements)
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SCAL

Addition and scalar multiplication are linked through the following axioms:

(Si) (∀x ∈ V ) 1·x = x (Action of identity)
(Sii) (∀r, s ∈ K, x ∈ V ) r·(s·x) = (rs)·x (Associativity)
(Siii) (∀r ∈ K, x, y ∈ V ) r·(x+ y) = r·x+ s·x (Distributivity 1)
(Siv) (∀r, s ∈ K, x ∈ V ) (r + s)·x = r·x+ s·x (Distributivity 2)

The elements of a vector space are called vectors , in the context of a vector space,
the field elements tend to be called scalars . (The German words are ,,Vektor“
and ,,Skalar“, the French expressions are �vecteur� and �scalaire�.)

A subset W ⊆ V of a vector space is called a vector subspace of V if W+W ⊆W
and K·W ⊆W , that is, if W is closed under addition and scalar multiplication. ut

� We note expressly that we never say what a vector is but rather how we
manipulate vectors. This is in complete agreement with our axiomatic

introduction of real numbers in Chapter 1.
Notice at once that a vector subspace W of a a vector space V is a vector

space in its own right with respect to the addition and scalar multiplications that
is induced on on W by the addition and scalar multiplication of V .

� The German words for vector subspace are ,,Untervektorraum“ or ,,Teil-
vektorraum.“ Therefore German students (of all ages) tend to come up

with the “translation” subvectorspace.
While this “translation” may be understood, one should accept the fact that the
English language does not allow the concatenation of nouns resulting in new ones;
as a consequence, the proper function of prefixes emerges in a different fashion.
There is no such thing as a “subvector.” The nonassociativity of the German
conglomeration of nouns is evidenced by this example: ,,Unter(vektorraum)“ is a
legitimate handling of the prefix ,,Unter-“, while ,,(Untervektor)raum“ would by
an absurd association. 1

We encountered, in passing, numerous examples of vector spaces:

1 One of my teachers used to offer an even better example for the nonassociativity of
German conglomeration of nouns; his example was ,,Mädchenhandelsschule“.

Recently, a colleague of mine at the University of Tübingen cites a newspaper report:
Am 7/8. Mai 2000 fand in Tübingen ein ,,Hallenflohmarkt mit Kindertauschbörse“ statt.
See also Mark Twain: The awful German Language, in: A Tramp abroad, Penguin Books
1997, pp 390ff. “Some German words are so long they have a perspective. Observe these
examples: Freundschaftsbezeigungen. Dilettantenaufdringlichkeiten. Stadtverordneten-
versammlungen. Untervektorraumkonstruktionen. These this are not words, they are
alphabetical processions. And they are not rare; one can open a German math book any
time and see them marching majestically across the page. . . They impart a martial thrill
to the meekest subject.” [Exercise. Check Mark Twain and find out where the quotation
of the original text has been (slightly) modified.]
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vector subvector

Examples 1.2. (i) All n-tuple-spaces Kn, n = 1, 2, . . ., are vector spaces under
componentwise addition and scalar multiplication:

(x1, . . . , xn) + (y1, . . . , yn) =(x1 + y1, . . . , xn + yn),
r·(x1, . . . , xn) =(rx1, . . . , rxn).

These examples have central significance for the foundation of the entire theory.

(ii) Let X be any nonempty set and KX the set of all functions f :X → K

with pointwise addition and scalar multiplication

(f, g) 7→ f + g, respectively, (r, f) 7→ r·f,

(f + g)(x) =f(x) + g(x)
(r·f)(x) =rf(x).

This makes KX a vector space. Since analysis is the theory of functions, obviously
this is a crucial example because many sets of functions occurcing in analysis
emerge as vector subspaces of KX .

In reality, (i) is a special case of (ii), because an n-tuple (x, . . . , xn) is none
other than a function j 7→ xj : {1, . . . , n} → K. (Cf. the topic space of sequences
K
N in Remark 2.39ff., or spaces of functions, implicitly in 3.23, in E5.2).

(iii) Let B(X) ≤ KX denote the set of all bounded function. Then B(X) is a
vector subspace (cf. E5.2).

(iv) If X is a real interval, then the set Cn(X) ⊆ RX of all n-times continu-
ously differentiable functions and the set C∞(X) of all smooth functions on I are
vector subspaces of RX . (For n = 0 this statements includes the case of the vector
space C(X) of continuous functions.)

(v) The set I([a, b]) of all Riemann integrable functions on [a, b] is a vector
subspace of B([a, b]). The set S([a, b]) of all step functions on [a, b] and the set
C([a, b]) are vector subspaces of I([a, b]) (cf. 5.18).
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(vi) Given a continuous function f : I → R, the set of all solutions u: I → R

of the linear differential equation u′(t) = f(t)u(t) is a vector subspace of C1(I).
(vii) The set of all increasing real valued functions on an interval I is not a

vector subspace of RI , nor is the set of all monotone functions a vector subspace.ut

Exercise E1.1. Take stock of all assertions in 1.2. In particular, verify (vi) and
(vii).

In dealing with the space of real numbers and the space of complex numbers,
we were able to proceed with analysis only after we had introduced metrics. The
distance of two numbers x and y was defined to be d(x, y) = |y−x|. This made all
sets of numbers into a metric space. For this purpose we used the absolute value
or norm |·|. The idea of a norm can be extended to the vector spaces Kn and other
vector spaces such as we saw in the case of B(X) in 5.3 (in the case of X = [a, b]).
Let us now systematically deal with this concept.

We now collect the defining properties of a norm ‖·‖, being guided by the
properties of the absolute value (cf. 1.73.).

Definition 1.3. A norm on a vector space V over K = R or K = C is a function
‖·‖:V → R if the following conditions are satisfied:
(i) (∀x ∈ V ) ‖x‖ ≥ 0 and (‖x‖ = 0⇔x = 0),
(ii) (∀x, y ∈ V ) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, (triangle inequality),
(iii) (∀r ∈ K, x ∈ V ) ‖r·x‖ = |r|·‖x‖. ut

The triangle inequality is equivalent to the following condition:
(iv) (∀x, y ∈ V )

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖. ut

Exercise E1.2. Prove the equivalence of (iii) and (iv) in 1.3.

On the n-tuple vector spaces, there are special norms which have particular
significance.

Proposition 1.4. For x = (x1, . . . , xn) in Kn we define

(i) ‖x‖1 = |x1|+ · · ·+ |xn|.
(ii) ‖x‖2 =

√
|x1|2 + |x2|2 + · · ·+ |xn|2.

(iii) ‖x‖∞ = max{|x1|, . . . , |xn|}.
Then all of these functions define norms on Kn.

Proof . Exercise. ut

Exercise E1.3. Prove 1.4
[Hint. The verification of 1.3(i, iii) is easy. The triangle inequality is easy for ‖·‖p
for p = 1 and p =∞. In the case p = 2, it is a consequence of the Cauchy-Schwarz
inequality. Indeed, since the squaring function is strictly antitone, we first notice
that the triangle inequality is equivalent to
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(ii∗) (∀x, y ∈ V ) ‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖·‖y‖+ ‖y‖2.
If we now set (x|y) =

∑n
j=1 xjyj , then ‖x‖22 = (x|x), and ‖x+y‖22 = (x+y | x+y) =

(x|x)+(x|y)+(y|x)+(y|y) = ‖x‖2 +(x|y)+(x|y)+‖y‖2 = ‖x‖2 +2 Re(x|y)+‖y‖2.
Thus since Re(x|y) ≤ |(x|y)|, for the 2-norm, (ii∗) is implied by
(ii∗∗) (∀x, y ∈ V ) |(x|y)| ≤ ‖x‖2·‖y‖2,
and this is the Cauchy Schwarz inequality (in the complex version of 5.9 for K =
C).]

Examples i) and iii) are special cases of the more general Definition
(iv) ‖x‖p = p

√
|x1|p + · · ·+ |xn|p.

It can be shown that ‖·‖p is a norm on Kn for all p = 1, 2, . . . ,∞, but the proof
is harder.

Definition 1.5. A vector space (V, ‖·‖) with a norm ‖·‖:V → R, is called a
normed vector space. We shall often refer to V itself as normed vector space. The
norm ‖·‖2 on Kn is called a euclidian norm. ut

Automatically, every vector subspace of a normed vector space is a normed
vector space.

Example 1.6. (i) The vector space B(X) of all bounded functions X → K on
a set X is a normed vector space with respect to the norm defined by

‖f‖∞ = sup{|f(x)| : x ∈ X }.

This norm is often referred to as the sup-norm. All vector subspaces of B(X) are
normed spaces with respect to the sup-norm.

(ii) If X is a compact metric space, then the space C(X) of all continuous
functions f :X → K is a vector subspace of B(X) and is, therefore, a normed space
(cf. 3.52).

(iii) The vector space C([a, b]) of all continuous and hence integrable function
(see 5.18(i)) on [a, b] is a normed space with respect to each of the norms

‖f‖1 =
∫
|f |, ‖f‖2 =

√∫
|f |2, and ‖f‖∞ = sup{|f(x)| : a ≤ x ≤ b}.

� On the vector space I([a, b]), the functions ‖·‖1 and ‖·‖2 fail to be norms.
Indeed, the characteristic function f of the singleton set is nonzero, but

‖f‖1 = ‖f‖2 = 0.
The conditions (ii), (iii), and (iv) of 1.4 are satisfied and, in addition, the condition
(i′) (∀x ∈ V ) ‖x‖ ≥ 0. ut

A function ‖·‖ which satisfies (i′), (ii), (iii) is called a seminorm, and a space
with a seminorm is called a seminormed space.

Proposition 1.7. Let (V, ‖·‖) be a normed vector space and X ⊆ V an arbitrary
subset. If we set d(x, y) = ‖x− y‖, then (X, d) is a metric space.
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Proof . Exercise. ut

Exercise E1.4. Prove Proposition 1.7.

As in every metric space we may consider spherical neighborhoods. The closed
unit balls B1(0) = {x ∈ V : ‖x‖ ≤ 1} in the normed vector space V = R

2, with
respect to the norms ‖·‖p, p = 1, 2,∞ look as follows

Figure 1.1

Complete metric spaces and Banach spaces
By 1.7 above, the concept of a Cauchy sequence (see 2.42) is meaningful in any
normed vector space. In 2.43 we proved that every Cauchy sequence in R and C
converges. In the paragraph following 2.42 we observe that in Q with the natural
metric given by d(x, y) = |y − x| there are divergent Cauchy sequences. We shall
now give a particular name to those metric spaces in which this does not occur.

Definition 1.8. (i) A metric space (X, d) is called complete, if every Cauchy
sequence converges.

(ii) A complete normed vector space over R or C is called a Banach space. ut

From Theorem 2.43 we know that R and C are Banach spaces (of dimension
1) in their own right.

Proposition 1.9. Assume that X is a subspace of a complete metric space Y .
Then the following statements are equivalent.
(i) X is closed in Y .
(ii) X is complete.

Proof . (i)⇒(ii): Let (xn)n∈N be a Cauchy sequence in X. But then this sequence
is a Cauchy sequence in Y . By hypothesis, Y is complete, hence y = limn→∞ xn
in Y . Now X is closed by (i), and thus y ∈ X (cf. E3.4(iv)). Somit hat die Folge
einen Limes in X.

(ii)⇒(i): Let y be an accumulation point of X in Y ; we have to show y ∈ X.
For every natural number n there is an xn ∈ X ∩ U1/n(y), that is, d(y, xn) < 1

n .
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Clearly, y = limxn. Claim: (xn)n∈N is a Cauchy sequence in X. For a proof let
ε > 0. Let us pick N so, that n > N implies d(y, xn) < ε

2 . If now m,n > N , then
d(xm, xn) ≤ d(xm, y)+d(y, xn) < ε

2 + ε
2 = ε. Thus the claim is proved. By (ii) the

space X is complete. Thus the Cauchy sequence (xn)n has a limit x in X. Thus
y = limxn = x ∈ X, and this is what we had to show. ut

Proposition 1.10. (i) Let X be an arbitrary nonempty set. Then B(X) is a
Banach space.

(ii) If X is a metric space, then C(X) ∩B(X) is a Banach space.
(iii) If X is a compact metric space then C(X) is a Banach space.

Proof . (i) Let (fk)k∈N be a Cauchy sequence in B(X) and let x ∈ X be arbitrary.
Then (fk(x))k∈N is a Cauchy sequence in K and thus has a limit f(x) ∈ K by
Theorem 2.43. Now let ε > 0 be given. Since (fk) is a Cauchy sequence there
is a natural number N so that ‖fk − fp‖ < ε/2 holds for all k, p > N . Thus
‖fk(x) − fp(x)‖ < ε/2 for all x ∈ X. The function r 7→ |r − fp(x)|:K → R is
continuous (cf. E3.12(iii)). Therefore |f(x) − fp(x)| = limk |fk(x) − fp(x)| ≤ ε/2
for all x ∈ X. Consequently, ‖f − fp‖ = sup{|f(x) − fp(x)| : x ∈ X } ≤ ε/2 < ε.
This shows f = lim fp, and because of |f(x) − fp(x)| ≤ ε/2 for all x we note
|f(x)| ≤ |fp(x)|+ ε ≤ ‖fp‖+ ε for any fixed p. This shows that f is bounded and
thus f ∈ B(X). (We observed, by the way that ‖f‖ ≤ ‖fp‖+ ε.)

(ii) By (i) and the preceding Proposition 1.9 we have to show that C(X)∩B(X)
is closed in B(X). Thus let f = lim fn with fn ∈ C(X). We have to show that f
is continuous in any x ∈ X. Thus let ε > 0 be given. First we find an N so, that
d(f, fn) < ε/3 for n > N . Now let n > N . Then fn:X → K is continuous; hence
we find a δ > 0 such that d

(
fn(u), fn(x)

)
< ε/3 for d(u, x) < δ. Thus for all of

these u we have

d
(
f(x), f(u)

)
≤ d
(
f(x), fn(x)

)
+d
(
fn(x), fn(u)

)
+d
(
fn(u), f(u)

)
<
ε

3
+
ε

3
+
ε

3
= ε.

This shows the of f in x.
(iii) After Theorem 3.52, every continuous real or complex valued function on

a compact space is bounded. Therefore we now have C(X) ⊆ B(X), that is
C(X) ∩B(X) = C(X), and the assertion now follows from (ii). ut

We noted before that Kn is a special case of KX with X = {1, . . . , n}. If X is
finite, then KX = B(X). Thus we obtain at once from 1.10(i):

Corollary 1.11. With respect to the norm ‖·‖∞, the vector space Kn is a Banach
space. ut

It is now rather useful that we can compare the various norms on Kn.

Proposition 1.12. For all x ∈ Kn we have
(i) ‖x‖2 ≤

√
n‖x‖∞, and

(ii) ‖x‖∞ ≤ ‖x‖2.
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Proof . (i) Let m = ‖x‖∞ = max{ |xj | | j = 1, . . . , n }. Then ‖x‖22 =
∑n
j=1 xjxj ≤∑n

j=1m
2 = nm2. Extracting square roots on both sides gives (i).

(ii) If m = |xk|, then m2 = xkxk ≤
∑n
j=1 xjxj = ‖x‖22. ut

Therefore a set U ∈ Kn is open with respect to ‖·‖2 if an only if it is open
with respect to ‖·‖∞; the two norms and their associated metrics define the same
topology on Kn. Thus topological concepts like the convergence of sequences in
K
n of the continuity of functions between subsets of Km and Kn does not depend

on our choice of one of these two norms. Likewise a sequence is a ‖·‖2-Cauchy
sequence if and only if it is a ‖·‖∞-Cauchy sequence. Thus we may conclude

Corollary 1.13. In R
n and in C

n, any Cauchy sequence with respect to the
euclidean norm ‖·‖2 converges. In particular, Kn is a Banach space with respect
to the euclidian norm ‖·‖2. ut

In 1.27 we shall prove an even better result.

� Not every normed vector space is complete as is illustrated by the following
example.

We consider the Banach space B(N) of all bounded sequences (x1, x2, . . .)
in R the vector subspace of all sequences (x1, x2, . . .), which have only finitely
many nonzero terms xk, that is, we consider V = {(xn)n∈N: (∃m)(∀n)n ≥ m ⇒
xn = 0}. By Proposition 1.9, V is complete iff it is closed in the Banach space
B(N). We now show that this is not the case: Define f1 = (1, 0, 0, 0, . . .), f2 =
(1, 1/2, 0, 0, 0, . . .), . . ., fn = (1, 1/2, . . . , 1/n, 0, 0, 0, . . .). Then (fk)k∈N is a se-
quence in V . Its limit in B(N) is the sequence (1, 1/2, . . . , 1/n, . . .), all of whose
members are nonzero and which therefore does not belong to V .

Uniform convergence versus pointwise convergence
If a sequence of functions fn:X → K converges in Banach space B(X) with respect
to ‖·‖∞ towards f , then we say that it converges uniformly to f . We have to
distinguish this type of convergence meticulously from that by which the sequence
of numbers fn(x) converges to f(x) for each x ∈ X. If this is the case we say that
the sequence of the functions fn converges pointwise to f .� Every sequence which converges uniformly to a function f converges point-

wise but not vice versa, as the following example shows.
Indeed, consider the sequence fn: [0, 1]→ R defined as follows:

fn(x) =

 2nx for x ∈ [0, 1/2n[,
2− 2nx for x ∈ [ 1

2n ,
1
n [,

0 for x ∈ [1/n, 1].
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Figure 1.2

This sequence converges pointwise, but not uniformly to the zero function. How-
ever, if a sequence of functions converges pointwise to a function f and if, in
addition, it converges uniformly on, then it converges uniformly to f .

Exercise E1.5. Let X be an arbitrary set. Prove the following assertions on a
sequence (fn)n∈N and an element f in B(X).

(i) (fn)n converges uniformly to f iff

(U) (∀ε > 0)(∃N ∈ N)(∀n > N)(∀x ∈ X) |f(x)− fn(x)| < ε.

(ii) (fn)n converges pointwise to f iff

(P) (∀x ∈ X)(∀ε > 0)(∃N ∈ N)(∀n > N) |f(x)− fn(x)| < ε.

[Hint. In case (ii) we reproduce the definition. In case (i), show that (U) and
limn ‖f − fn‖ = 0 are equivalent.]

By Proposition 1.10, any uniform limit of a sequence of continuous functions
is continuous. In particular, for any compact metric space X such as for instance
X = [a, b], the vector space C(X) of all continuous functions f :X → K is a Banach
space with respect to the sup-norm. In Part (iii) of Proposition 1.10 compactness
was used only in order to secure that the limit function is bounded.

We have observed just now that C([a, b]) is a Banach space with respect to the
sup-norm. A similar theorem also holds for Riemann integrable functions as we
shall prove now.

Theorem 1.14. Assume that a sequence fn: [a, b] → R of real valued functions
on the compact interval [a, b] converges uniformly to a function f : [a, b]→ R, and
assume further that all terms fn of the sequence are integrable, then the limit
function f is integrable and

∫
f = limn

∫
fn.

In particular, the space I([a, b]) of all Riemann integrable functions on [a, b] is
a Banach space with respect to the sup-norm and

∫
: I([a, b])→ R is a continuous

linear form.
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Proof . Let ε0 > 0. Set ε = ε0/(b − a + 1). Then there exists an n such that
‖f − fn‖∞ < ε/3. That is,

(∗) fn − ε/3 < f < fn + ε/3.

By the Riemann Criterion 5.12 there are step functions s, t ∈ S[a, b] such that
s < fn < t and

∫
(t− s) < ε/3. Now s− ε/3 < fn − ε/3 < f < fn + ε/3 < t+ ε/3

and
∫ (

(t + ε/3) − (s − ε/3)
)
< ε/3 + 2(b − a)ε/3 < ε0/3 + 2ε0/3 = ε0. The

Riemann Criterion now shows that f is integrable. Furthermore we know from
the uniformity of the convergence of fn to f that for all sufficiently large natural
numbers m we have ‖f − fm‖ < ε

3 . For these m we have |
∫
f −

∫
fm| = |

∫
(f −

fm)| ≤
∫
|f − fm| ≤

∫
ε/3 = (b− a)ε/3 ≤ ε0/3. Therefore limm→∞

∫
fm =

∫
f . ut

We point out specifically that the statement
∫

(lim fn) = lim(
∫
fn) in 1.14

means, that in the case of uniform convergence one may exchange integration and
passage to the limit.

Hilbert spaces
Returning for a moment to the spaces Kn we recall that the euclidian norm was
defined by ‖x‖22 = |x1|2 + . . .+ |xn|2.

In proving the triangle inequality for the norm ‖·‖ we used a two argument
function from which this norm arises; let us summarize what we did in that proof.
For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Kn we define the following
number in K:

(4) (x | y) = x1y1 + · · ·+ xnyn ∈ K,

also written as 〈x, y〉 or x·y. It is called scalar product or inner product of x and
y.

ut

In terms of the inner product we have ‖x‖22 = (x | x). We record the properties
of this inner product.

Definition 1.15. Let V be a real or complex vector space. A function (·|·) :
V × V → K is called an inner product if it satifies the following conditions.
(i) (x + y | z) = (x | z) + (y | z) and (x | y + z) = (x | y) + (x | z) for all

x, y, z ∈ V .
(ii) (rx | y) = r(x | y) and (x | ry) = r(x | y) for all x, y ∈ V and r ∈ K.
(iii) (x | y) = (y | x) for all x, y ∈ V .
(iv) (x | x) ≥ 0 for all x ∈ V , and
(v) (x | x) = 0 implies x = 0.

In the case of the inner product on K = R, one may omit the overlines.
Sometimes an inner product is also called a positive definite sesquilinear form

in reference to the conjugate linearity in the second argument, as the Latin pre-
fix “sesqui” means “one-and-a-half times.” Another expression that is frequently
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applied to an inner product is “positive definite hermitian form.” If all condi-
tions with the exception of (v) are satisfied, one speaks of a positive semidefinite
hermitean form. ut

Proposition 1.16. For K = R, C, on the vector space Kn the function defined
by (4) above is an inner product.

Proof . Exercise. ut

Exercise E1.6. Prove Proposition 1.16.

Proposition 1.17. (Cauchy-Schwarz Inequality) An inner product on a complex
vector space satisfies

(5) |(f | g)|2 ≤ (f | f)(g | g).

Proof . Exercise. ut

Exercise E1.7. (i) Prove 1.17(5).
(ii) Prove the following assertion:

For any inner product on a real or complex vector space V , the function ‖·‖:V → R

defined by ‖x‖ =
√

(x|x) is a norm.
[Hint. (i) Invoke 5.9.

(ii) Use (i) and the arguments of Exercise E1.2.]

Example 1.18. On the space I = I([a, b]) of all real valued functions on [a, b]
that are Riemann integrable, the function (· | ·): I × I → R (f | g) =

∫
fg is a

positive semidefinite function which satisfies (1), (2) and (3), but fails to satisfy
(4). Such a function is called a positive semidefinite hermitian form.

Observe that ‖f‖2 =
√

(f | f). In Example 1.6(b) we noted that ‖·‖2 is not a
norm on I([a, b]), but only a seminorm.

Let { rn : n ∈ N } be an enumeration of the set of rational numbers in [0, 1] and
let fn ∈ I[0, 1] denote the characteristic function of {r1, . . . , rn}. Then fn ≤ fn+1,
n = 1, 2, . . ., and

∫
fn = 0 as well as

∫
|fn − fm|2 = 0. Thus (fn)n∈N is a Cauchy

sequence in I([0, 1]) with respect to the seminorm ‖·‖2. It converges pointwise
(from below) to the characteristic function f of Q ∩ [0, 1], a function which is
not Riemann integrable (see discussion following Definition 5.11(ii)). All of the
functions fn have the norm ‖fn‖2 = 0, but neither of them is 0. The convergence
of fn to f is far from uniform since ‖fn−fm‖∞ = 1 for m 6= n and ‖f −fn‖∞ = 1
for all n. ut

Definition 1.19. A real or complex vector space with an inner product (·|·), that
is, a positive definite hermitian form, is called an inner product space. A Banach
space whose norm arises from a positive definite hermitean form is called a Hilbert
space. ut
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Sometimes an inner product space is called a pre-Hilbert-space.

Examples 1.20. (i) The vector spaces Rn (and Cn) are Hilbert spaces with
respect to the inner product.

(ii) Let V be the set of all sequences (xk)k∈N, xk ∈ K, such that
∑∞
k=1 |xk|2

converges. Thus set is a vector subspace of KN. For each pair of elelements
x = (xk)k∈N and y = (yk)k∈N. Then the infinite series

∑∞
k=1 xkyk converges

absolutely, and its sum yields a number (x | y) in such a fashion that (·|·) is a
positive definite hermitean form on the vector space V making it into a Hilbert
space. ut

The inner product space V of 1.20(ii) is denoted `2.

Exercise E1.8. Prove, that `2 is a Hilbert space. ut

The geometry of real inner product spaces
We are interested in the geometry of inner product spaces, notably in the special
case of Rn. We shall utilize our knowldge of complex numbers and the exponential
function. The Cauchy-Schwarz Inequality says |(x | y)| ≤ ‖x‖·‖y‖. If x as well
as y are nonzero, we can form the vectors u = ‖x‖−1·x and v = ‖y‖−1·y, both of
which are unit vectors, that is vectors of length 1. In that case the inner product
(u | v) is a number in [−1, 1]. What is the significance of this number?

Let us assume momentarily that u, v ∈ R2. In that case we identify R2 with C
under the bijection (x, y) 7→ x+ iy and observe that

Re(uv) = Re
(
(u1 + u2i)(v1 − v2i)

)
= Re

(
u1v1 + u2v2 + i(−u1v2 + u2v1)

)
=u1v1 + u2v2 = (u|v).

Now let |u| = |v| = 1, say, u = eis and v = eit with unique numbers s, t ∈ [0, 2π[
by Proposition 3.38(i). Note that for r ∈ R we have cos r = Re eir = Re e−ir =
Re ei(2π−r) = cos(2π − r), since exp has period 2πi (cf. 3.36). Then (u | v) =
Re(uv) = Re(eise−it) = Re ei(s−t) = cos(s− t) = cos |s− t| = cos(2π − |s− t|)

Definition 1.21. Let (u1, u2), (v1, v2) be two nonzero vectors in R2; set u =
u1 + u2i and v = v1 + v2i in C and write u

|u| = eis and v
|v| = eit with unique real

numbers s, t ∈ [0, 2π[. Then the number

α(u, v) = min{|s− t|, 2π − |s− t|} ∈ [0, π]

is the called the nonoriented angle between u and v. (Cf. Definition 3.39ff.) ut

The number |s− t| depends on the set {u, v} and not on the ordered pair (u, v),
that is, it does not change if we exchange the roles of u and v; this is why we call
it the “nonoriented” angle between u and v.

The following figure shows that for equal values of cos s and cos t two different
angles s and t are conceivable which are still distinguished by the numbers sin s
and sin t. (Cf. Proposition 4.50(∗).)
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Figure 1.3

Now we have to get away from R
2. We ask the question whether in an arbitrary

real vector space V with an inner product (·|·) we can interpret (f |g) for two unit
vectors f and g as the cosine of an angle between f and g. For this purpose we
attempt to transport the geometry of the plane into V in an appropriate fashion

Lemma 1.22. Let V be an arbitrary real vector space with an inner product (·|·).
Let f, g be two linearly independent vectors in V . We give R2 the inner product
given by

(
(u1, u2)|(v1, v2)

)
= u1v1 + u2v2. Then there is a linear map L:R2 → V

such that (Lx|Ly) = (x|y) for x, y ∈ R2 whose range is the span of f and g.

Proof . Now let f and g be unit vectors in V . First we consider the vector
h = g − (f | g)f in V .

Figure 1.4

If this vector is 0, then g = (f | g)f . Since f and g are unit vectors, this means
(f | g) = ±1. In both of these cases, (f | g) is indeed the cosine of the angle
between f and g, which is 0 for +1 and π for −1. Now assume the case h 6= 0 and
set e = ‖h‖−1·h. Then e is a unit vector such that

(f | e) =
(
f | ‖h‖−1·(g − (f | g)·f)

)
= ‖h‖−1

(
(f | g)− (f | g)(f | f)

)
= 0.
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This motivates us to choose the wanted map L so that L(1, 0) = f and L(0, 1) = e.
In other words we define

L(x, y) = x·f + y·e.

Then L satisfies the following conditions
(i) L(a+ b) = L(a) + L(b) for all a, b ∈ R2, and
(ii) L(r·a) = r·L(a) for all a ∈ R2, r ∈ R.

If we take a = (x, y) and b = (x′, y′) in R2, then on the one hand we have (a | b) =
xx′ + yy′. On the other hand we observe (f | f) = (e | e) = 1 and (e | f) = 0,
from which we conclude (L(a) | L(b)) = (x·f + y·e | x′·f + y′·e) = xx′+ yy′. Thus
we have
(iii) (L(a) | L(b)) = (a | b) for all a, b ∈ R2.

In particular, (3) implies ‖L(a)‖ = ‖a‖. This is why L is called an isometry
from R

2 into V . If L(a) = L(b), then (1) and (2) imply L(b − a) = 0 and thus
‖b − a‖ = ‖L(b − a)‖ = 0, that is b − a = 0. An isometry therefore is always
injective. The conditions (1) and (2) of linearity of L ensure that the vector space
properties of R2 are faithfully translated into vector space properties of V . The
vector subspace of all x·f+y·e, (x, y) ∈ R2 is in every respect a faithful image of R2.
One says that it is isometrically isomorphic to R2 via the isometry L. Measuring
of lengths and angles yield the exact same results in this vector subspace of V as
in R2. In particular, (f | g) is the cosine of the angle between the unit vectors f
and g. Also, by our definition of the angle between f and g is a number t ∈ [0, π]
Thus we have the following result which sharpens the Cauchy-Schwarz inequality
(in the real case).

Theorem 1.23. If f and g are two vectors in a vector space with an inner product
(· | ·), then

(6) (f | g) = ‖f‖·‖g‖ cos t,

where t ∈ [0, π] is the nonoriented angle between f and g.
ut

We notice that the angle is undefined if one of the two vectors f and g vanishes.
But then (6) remains valid in the sense that it both sides of (6) are zero. If both
f and g are nonzero, We may interpret ‖g‖ cos t as the length of the projection
of g on the straight line spanned by f , and likewise ‖f‖ cos t as the length of the
projection of f on the straight line spanned by g.



1. Normed Vector Spaces 15

Figure 1.5

In particular we say that two vectors are perpendicular or orthogonal to each
other if (f | g) = 0 holds.

Everything that was said for vector spaces with an inner product holds, in
particular for Rn.

Finite dimensional normed vector spaces
If V is a finite dimensional normed vector space, then for every basis {e1, . . . , en}
we find an isomorphism of vector spaces ϕ:Kn → V by setting ϕ(x1, . . . , xn) =
x1·e1 + · · · + xn·en. If we set ‖(x1, . . . , xn)‖ def= ‖ϕ(x1, . . . , xn)‖V, then we define
on Kn a norm ‖·‖ such that ‖ϕ−1(x)‖ = ‖x‖V. Therefore ϕ preserves norms; it
is an isometry. In considering norms on finite dimensional vector spaces we may
restrict our attention to the n-tuple spaces Kn.

Lemma 1.24. Let ‖·‖ be any norm on K
n, n ≥ 1. Then the function x 7→

‖x‖ : (Kn, ‖·‖∞) → R is continuous with respect to the metric d on Kn given by
d(u, v) = ‖v − u‖∞ with the max-norm.

Proof . We set e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) etc. If we set C = ‖e1‖ +
· · · ‖en‖, then C ≥ ‖e1‖ > 0, and∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖

= ‖(x1, . . . , xn)− (y1, . . . , yn)‖ = ‖(x1 − y1, . . . , xn − yn)‖
= ‖(x1 − y1)·e1 + · · ·+ (xn − yn)·en‖ ≤ |x1 − y1|·‖e1‖+ · · ·+ |xn − yn|·‖en‖

≤ ‖x− y‖∞·(‖e1‖+ · · · ‖en‖)
= C‖x− y‖∞.

Now for any ε > 0, the relation ‖x− y‖∞ < ε
C implies

∣∣‖x‖ − ‖y‖∣∣ < ε. ut

Let S denote the surface {x ∈ Kn : ‖x‖2 = 1} of the euclidean unit ball,
called the unit sphere. If K = R then S is an “n − 1-dimensional surface” in
the n-dimensional space Rn; therefore one also writes S = S

n−1 and calls S the
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n− 1-sphere. The boundary of the unit ball in Cn is

{(x1 + y1i, . . . , xn + yni) : x2
1 + y2

1 + · · ·+ x2
n + y2

n = 1},

and if we identify R2n with Cn via (x1, y1, . . . , xn, yn) 7→ (x1 + y1i, . . . , xn + yni),
then this is the 2n− 1–sphere S2n−1.)

If D denotes the unit disk or unit ball {z ∈ K : |z| ≤ 1} in K, then the
‖·‖∞-unit ball B∞ in Kn is exactly D × · · · ×D︸ ︷︷ ︸

n times

⊆ K
n. This set contains the

n− 1–sphere Sn−1 = {(x1, . . . , xn) : |x1|2 + · · ·+ |xn|2 = 1}. By 1.23, the function
ν: (Kn, ‖·‖) → R, ν(x) = ‖x‖2 is continuous and S = ν−1({1}), the subset S is
closed in B∞, since for continuous functions, inverse images of closed sets are
closed.

We could have proved the following lemma long ago, but now it is needed.
Indeed the essence was proved in 3.49(iii).

Lemma 1.25. (i) If Xj, j = 1, . . . , n are compact metric spaces then the product
space X1 × · · · ×Xn is compact with respect to the metric given by

D((x1, . . . , xn), (y1, . . . , yn)) = max{d1(x1, y1), . . . , dn(xn, yn)}.

(ii) For each r ≥ 0 the ball Br(0) = {x ∈ Kr : ‖x‖∞ ≤ r} = {(x1, . . . , xn) :
|x1|, . . . , |xn| ≤ r} is compact.

Proof . (i) For n = 1 the Lemma is trivial. For n = 2 it was proved in 3.49(iii).
It is now an easy exercise to apply induction to prove (i) in full generality.

(ii) Let Dr ⊆ K denote the closed disc of radius r. Then Dr is compact
by the Bolzano-Weierstraß-Theorem for K. (See 3.46 and 3.50.) Now we notice
Br(0) = Dn

r ⊆ Kn and apply (i) above. ut

Exercise E1.9. Write down the details of the proof by induction of Lemma
1.25(i), using 3.49(iii).

By 1.25(ii) the ‖·‖∞-unit ball B1(0) in Kn is compact and S ⊆ B1(0). By
3.49(i) a closed subspace of a compact metric space is compact. Therefore,
(comp) the n− 1–sphere Sn−1 in Rn is compact.
In Proposition 1.12 we observed that each of the norms ‖·‖2 and ‖·‖∞ is dominated
by a multiple of the other. This is an important fact and we now show that this
remains true for any pair of norms on Kn.

Definition 1.26. Two norms ‖·‖ and ‖·‖∗ on any K-vector space V are said to
be equivalent norms, if there are positive numbers c and C such that

(7) (∀x ∈ V ) c‖x‖∗ ≤ ‖x‖ ≤ C‖x‖∗. ut

Now we prove a surprising and important result.

Theorem 1.27. Two arbitrary norms on a finite dimensional vector space over
R or C are equivalent.
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Proof . First we consider an arbitrary norm ‖·‖ onKn and show that it is equivalent
to the euclidean norm ‖·‖2. The function s 7→ ‖s‖:S → R is continuous by 1.24
when the ‖·‖∞-metric is considered on S relative to which S is compact as we
observed in (comp) above. Thus the image ‖S‖ is a compact set of nonnegative
real numbers. By the Theorem of the Maximum 3.52 the numbers a = min ‖S‖
and A = max ‖S‖ are well defined. Thus there is a v ∈ S with a = ‖v‖. If we had
a = 0 then v = 0 by 1.3(i), and then 0 = ‖v‖2 = 1, and obvious contradiction.
Therefore 0 < a. Now let 0 6= x ∈ Kn. Then s

def= ‖x‖−1
2 ·x ∈ S. Hence a ≤ ‖s‖ =

‖x‖−1
2 ·‖x‖ ≤ A. This is equivalent to a‖x‖2 ≤ ‖x‖ ≤ A‖x‖2. These inequalities

also hold for x = 0.

Next, if a second norm ‖·‖∗ is given on Kn, then by the first part of the proof
there are positive numbers b < B such that b‖x‖2 ≤ ‖x‖∗ ≤ B‖x‖2 for all x ∈ Kn.
But then a

B ‖x‖∗ ≤ ‖x‖ ≤
A
b ‖x‖∗ for all x ∈ Kn. We set c = a

B and C = A
b ;

then the theorem is proved for Kn. Since every n-dimensional K-vector space is
isomorphic to Kn the theorem holds for all n-dimensional K vector spaces. ut

The most important conclusion is that, in a finite dimensional K-vector space,
the properties of a subset to be open, closed, bounded, compact, or connected do
not depend on the choice of a particular norm. Furthermore the properties of a
sequence to be a Cauchy sequence or to converge also do not depend on the choice
of a norm.

Exercise E1.10. Prove the following proposition.
Let V be a finite dimensional vector space over K and let A be a subset. Moreover
let (xn)n∈N be a sequence in V and x an element of V . Each norm ‖·‖ on V turns
V into a metric space via d(x, y) = ‖x − y‖. The following statements therefore
are all meaningful:
(a) A is open [respectively, closed] in V .
(b) A is bounded in V .
(c) x = limn→∞ xn.
(d) x is an accumulation point of A.
(e) x is a cluster point of (xn)n∈N.
(f) A ist compact.
(g) A ist connected.
(h) A is pathwise connected.
The truth of each of these assertions is independent of the choice of ‖·‖. ut

This permits us to prove a generalisation of the theorem of Bolzano and
Weierstraß which we proved for one-dimensional vector spaces in Chapter 3.

Theorem 1.28. (Bolzano-Weierstraß) For a subset X of a finite dimen-
sional real or complex vector space the following statements are equivalent
(i) X is compact.
(ii) X is closed and bounded.
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Proof . (i)⇒(ii): Every compact subset of a metric space is closed and bounded
by 3.45.

(ii)⇒(i): It is no loss of generality to consider V = K
n. By Theorem 1.27 and

Exercise E1.8 above, (ii)⇒(i) is proved for any norm if (ii)⇒(i) is proved for
the max-norm given by ‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}. We establish the
implication for this one.

By (ii) there is an r ≥ 0 such that ‖x‖∞ ≤ r for all x ∈ X. Thus X is a closed
subset of the ‖·‖∞-ball Br(0) which is compact by 1.25(ii). Since X is assumed
to be closed in (ii), and since by 3.49(i) a closed subspace of a compact space is
compact, X is compact as asserted. ut

We recall from a warning following Theorem 3.46 that that compactness (and closedness) are

topological properties while boundedness in a metric space is not a topological property. This

applies again in the situation of the more general Bolzano-Weierstraß Theorem 1.28. Notice,

however, that a set which is norm-bounded with respect to one norm in Kn is norm bounded

with respect to all norms. Metric boundedness does not have this agreeable property of norm

boundedness as we saw after 3.46.

Corollary 1.29. All closed balls in a finite dimensional real or complex vector
space are compact. ut

Exercise E1.11. Consider the Banach space B(N,K) of all real bounded se-
quences. Show that the unit ball B1(0) = {(xn)n∈N : |xn| ≤ 1} is not compact
with respect to the sup-norm.
[Hint. Consider the sequence (en)n ∈ N in B(N) given by en = (δnm)m∈N with

δnm =
{ 1 if m = n

0 otherwise.

(This function (n,m) 7→ δnm is sometimes called the Kronecker delta.) Observe
that p 6= q implies ‖ep − eq‖∞ = 1. Suppose that x were a cluster point of
(ep)p∈N. Then the open ball U1/2(x) of radius 1

2 would contain infinitely many of
the different elements ep (see 3.41). Let ep and eq be a pair of these with p 6= q.
Then 1 = ‖ep − eq‖ ≤ ‖ep − x‖+ ‖x− eq‖ < 1

2 + 1
2 = 1, a contradiction.]

One can show that the only Banach spaces in which the closed balls are compact are the

finite dimensional ones.

Linear maps
Recall from linear algebra:

Definition 1.30. A function or map linear if it satisfies the following conditions
(i) (∀u, v ∈ V ) L(u+ v) = L(u) + L(v),
(ii) (∀v ∈ V, r ∈ K) L(r·v) = r·L(v). ut
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The set Hom(V,W ) ⊆WV of linear maps L:V →W or vector space homomor-
phisms is a vector subspace of WV . If V and W are finite dimensional we choose
bases e1, . . . , en of V and f1, . . . , fm of W , then there are, firstly, m linear forms
ωj , j = 1, . . . ,m such that y =

∑m
j=1 ωj(y)·fj . The numbers ajk = ωj

(
L(ek)

)
form the matrix (ajk) j=1,...,m

k=1,...,n
of the linear map L with respect to the bases ek and

fj . We note

L(x) =
m∑
j=1

ωj
(
L(x)

)
·fj , and

L(x) = L(
n∑
k=1

xk·ek) =
n∑
k=1

xk·L(ek) =
n∑
k=1

m∑
j=1

xkωj
(
L(ek)

)
·fj

=
∑

j=1,...,m
k=1,...,n

ajkxk·fj , also

ωj
(
L(x)

)
=

n∑
k=1

ajkxk.

The choice of a basis of V is tantamount with the choice of an isomorphism of
K-vector spaces V → K

n. If, instead of V ∼= K
n, we even have equality V = K

n,
then we have the so-called standard basis ek = (0, . . . , 1, . . . , 0) with 1 in the k-th
position. Then in case of V = K

n and W = K
m there is a natural (linear) bijection

between the vector space Hom(V,W ) of all linear maps L:V →W and the vector
space Mmn(K) of all m × n-matrices (ajk) j=1,...,m

k=1,...,n
. Since the latter is clearly an

mn-dimensional vector space we have

(8) dim Hom(V,W ) = (dimV )(dimW ).

Linear forms
A particularly simple type are the linear maps f :Kn → K. By the preceding
discussion they are characterized by a row matrix (a1, . . . , an) and f(x1, . . . , xn) =
a1x1 +· · ·+anxn

def= 〈a, x〉 where x = (x1, . . . , xn), and a = (a1, . . . , an). Therefore
there is a bijective map Kn → Hom(Kn,K) which associates with a vector a =
(a1, . . . , an) ∈ Kn the linear form x 7→ 〈a, x〉 : Kn → K.

We notice that in R2 the set {x = (x1, x2) : 〈a, x〉 = (x | a) = 0} is exactly the
set of all vectors which are perpendicular to a by 1.23.

If K = C then 〈a,x〉=a1x1+···+anxn=(x|a) according to the definition of the inner product in

the complex case by (4) preceding 1.15. Thus in K2, then set {x : 〈a, x〉 = 0} is the set of vectors

which are perpendicular to a. We shall from now on deal with the real case. But we point out,

that in principle, an extension to the case of Cn is easily possible if this remark is observed. In

the real case we have 〈a, x〉 = (x | a) = (a | x).

If a 6= 0, then this set is a straight line through the origin. In Rn the cor-
responding set of all x satisfying 〈a, x〉 = (x | a) = 0 is a plane. Following this
pattern we say that for a 6= 0 the set {x ∈ Rn : 〈a, x〉 = (a | x)} is a hyperplane
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through the origin. If x0 is an arbitrary point in Rn and a0
def= (a | x0), then the

vector x − x0 is perpendicular to a iff (a | x − x0) = 0, that is, if (a | x) = a0.
This is the case exactly when x is contained in that hyperplane which contains
the point x0 and is perpendicular to a. Notably, the vector ǎ = a0

‖a‖2 ·a satisfies

(a | ǎ) = a0, where ‖·‖ is the euclidean norm. We note ‖ǎ‖ = |a0|
‖a‖ . Thus we have:

Remark. For a nonzero vector a in an arbitrary real vector space V the set
{x ∈ V : (x | a) = (a | x) = a0} is a hyperplane which is perpendicular to a and
has the distance ‖a‖−1·‖a0‖ from the origin. ut

Figure 1.6

Continuity of linear maps
Theorem 1.31. A linear map between finite dimensional vector spaces is contin-
uous.

Proof . We consider a linear map L:Kn → K
m; we know that the special form of

the domain and codomain is no restriction of generality. Now L is described by a
matrix (ajk) j=1,...,m

k=1,...,n
through the formula

(9) L(x) = (
n∑
k=1

a1kxk, . . . ,

n∑
k=1

amkxk), x = (x1, . . . , xn).
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After Theorem 1.27 it is immaterial which norms we consider on Kn and Km. We
choose the max-norms and compute

‖Lx− Ly‖∞ =

∥∥∥∥∥
(

n∑
k=1

a1k(xk − yk), . . . ,
n∑
k=1

amk(xk − yk)

)∥∥∥∥∥
∞

= max

{∣∣∣∣∣
n∑
k=1

a1k(xk − yk)

∣∣∣∣∣ , . . . ,
∣∣∣∣∣
n∑
k=1

amk(xk − yk)

∣∣∣∣∣
}

≤ max

{
n∑
k=1

|a1k|·|xk − yk|, . . . ,
n∑
k=1

|amk||xk − yk|

}
≤ n·max{|ajk| : j = 1, . . . ,m; k = 1, . . . , n}·max{|xk − yk| : k = 1, . . . , n}
≤ C·‖x− y‖∞

where C = n·max{|ajk| : j = 1, . . . ,m; k = 1, . . . , n}. Of course, this proves the
desired continuity. ut

The automatic continuity of linear maps between finite dimensional vector
spaces breaks down if the domain is infinite dimensional. For instance if we con-

sider on C([0, 1],R) the norm given by ‖f‖2 =
√∫

f2, then the sequence fn defined
by fn(x) = xn converges to the zero function f = 0 for this norm. (Proof?) The
function L:C([0, 1]) → R, L(ϕ) = ϕ(1), is a linear form. But L(fn) = 1n = 1
but L(f) = f(1) = 0. Thus L fails to be continuous even though the range is
one-dimensional.

The operator norm
Consider two finite dimensional normed vector spaces V and W . We claim that
the finite dimensional vector space Hom(V,W ) (see (8)) can be given a norm
which depends in a natural way on the norms of V and W . We first have to
assign to a linear map L:V → W a number ‖L‖ ∈ R. The norm ‖·‖V in V gives
us a unit ball B = {x ∈ V : ‖x‖V ≤ 1}. Since V is finite dimensional, B is
compact by 1.29. By Theorem 1.31, the function L:V → W is continuous. The
function y 7→ ‖y‖W : W → R is continuous by 1.24 (cf. also 1.27). Then we have
a continuous function x 7→ ‖L(x)‖W :B → R which is bounded on the compact
space by Theorem 3.52 and even attains a maximum. We set

(101) ‖L‖ = max{‖L(x)‖ : x ∈ V, ‖x‖V ≤ 1}.

We remark

(102) ‖L‖ = sup{‖L(x)‖ : x ∈ V, ‖x‖V ≤ 1}.

If L:V →W is a linear map between not necessarily finite dimensional normed vector spaces,

then the continuity of L is equivalent with the boundedness of the set {L(x) : ‖x‖ ≤ 1}. In this

case, (10)2 is still a viable definition while (10)1 does not work in general.



22 1. Normed Vector Spaces

Theorem 1.32. Assume that V and W are finite dimensional normed K-vector
spaces. The function L 7→ ‖L‖: Hom(V,W ) → R defined in (101), equivalently,
(102) above is a norm on the vector space Hom(V,W ) satisfying

(11) (∀L ∈ Hom(V,W ), v ∈ V ) ‖Lv‖W ≤ ‖L‖·‖v‖V .

If U , V , and W are finite dimensional vector spaces, then

(12)
(
∀T ∈ Hom(U, V ), S ∈ Hom(V,W )

)
‖ST‖ ≤ ‖S‖·‖T‖.

Proof . Exercise. ut

Definition 1.33. The norm on Hom(V,W ) according to Theorem 1.32 is called
operator norm. ut

Exercise E1.13. (i) Prove 1.32.
(ii) Prove the following proposition:

Proposition. Let V = K
n and W = K

m and consider the max-norms on both of
these. Let L:V →W have the matrix A = (ajk) j=1,...,m

k=1,...,n
. Then the operator norm

of L is computed as

‖L‖ = max
j=1,...,m

n∑
k=1

|ajk|.

If K = R and m = n = 2 and if L has the matrix
(

0 1
0 0

)
, then the operator

norm (for the max-norm on R2) is 1.

If one has enough linear algebra background to know the concept of an eigenvalue, then one

notices that the characteristic polynomial of L is λ2 and thus the only eigen-value of L is 0.

[Hint. (i) Verify all properties of a norm 1.3(i),(ii),(iii). For a proof of (11) take
an arbitrary v ∈ V . If ‖v‖V ≤ 1, then (11) is immediate from (10). Now let
v 6= 0; then w

def= ‖v‖−1
V ·v has norm 1; thus ‖Lw‖ ≤ ‖L‖ by (10), and then (11)

follows upon multiplying with ‖v‖V . For a proof of (12) assume ‖u‖U ≤ 1; then
‖STu‖W ≤ ‖S‖·‖Tu‖V ≤ ‖S‖·‖T‖ by (11) and (10); now form the sup over all
‖u‖U ≤ 1 on the left side.

(ii) Write v =

 v1
...
vn

 and Lv =

 w1
...
wm

. Then Lv = Av, whence wj =

aj1v1 + · · · + ajnvn, j = 1, . . . ,m. Use this to show |wj | ≤ ‖v‖∞
∑n
k=1 |ajk|.

Then ‖Lv‖∞ ≤ maxj=1,...,m

∑n
k=1 |ajk|. Conversely, assume that

∑n
k=1 |aj0k| is

the maximal one among the sums on the right hand side. Choose v by setting
vk = sgn aj0k. Then ‖v‖∞ = 1 and ‖Lv‖ =

∑n
k=1 aj0kvk =

∑n
k=1 |aj0k|.]� The explicit calculation of an operator norm in terms of matrix coefficients

like in E1.10(ii) is a rare event; one does not expect that this is easily
possible for other norms on V and W .
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Given enough information on Hilbert spaces and their endomorphisms, one can show that the

operator norm of a selfadjoint endomorphism is the maximum of the absolute values of the

eigenvalues.

The vector space A def= Hom(V,W ) has dimension (dimV )(dimW ) by (8) above
and is therefore finite dimensional. Hence it is a Banach space by 1.11 and 1.27.
The vector space Hom(V, V ) is closed under multiplication (composition of linear
self-maps of V ) and is an excellent example for what one calls a Banach algebra.

Definition 1.34. A Banach algebra A (over K) is a Banach space (over K) with
an associative multiplication (x, y) 7→ xy : A× A → A such that s·xy = (s·x)y =
x(s·y) for all s ∈ K and x, y ∈ A, and that ‖xy‖ ≤ ‖x‖·‖y‖ for all x and y in A.
We say that A is unital if it has a multiplicative identity element. ut

Apart from the example of Hom(V, V ), which is isomorphic to the space Mn(K)
of n × n matrices over K with the operator norm, the fields R and C, equipped
with their absolute values, are Banach algebras over R, respectively C.

Since convergence of sequences is defined in all metric spaces (see Definition
2.13) and every Banach space is in particular a metric space with d(x, y) = ‖x−y‖,
the definition of convergence of an infinite series of numbers can be generalized
from R and C without any problems to infinite series

∑∞
n=0 xn, to any Banach

space E, where xn ∈ E, and it should be clear what convergence and absolute
convergence should be. Indeed we shall say that

∑∞
n=0 xn has a sum x in E if

x = limn→∞(x0 + · · · + xn), and we shall call
∑∞
n=0 xn absolutely convergent if

the infinite series of nonnegative numbers
∑∞
n=0 ‖xn‖ converges. In E all Cauchy

sequences converge by definition; the proof of 2.50 applies with ‖·‖ in place of |·|
and shows that absolutely convergent series converge.

Now let us consider a unital Banach algebra A (such as Hom(V, V )) and a ∈ A.
Then induction shows ‖a‖n ≤ ‖a‖n. Now let

∑∞
n=0 anz

n be a power series in C
with radius of convergence ρ > 0 (see Definitions 2.57 and 2.58 and Theorem 2.59).
If ‖a‖ < ρ, then

∑∞
n=0 |an|·‖a‖n converges. Since ‖an·an‖ ≤ |an|·‖a‖n the power

series
∑∞
n=0 an·an converges absolutely. In particular, it converges.

This applies, in particular to the power series
∑∞
n=0

1
n!z

n. Thus for all elements
u ∈ A the infinite series 1 + u + 1

2!u
2 + 1

3!u
3 + · · · converges absolutely and thus

defines a function

exp:A→ A, expu =
∞∑
n=0

1
n!
un.

The proof of Theorem 2.66 of the Convergence of the Convolution (Cauchy
product) of two abolutely convergent infinite series generalizes at once to absolutely
convergent infinite series in a Banach algebra; all we need to do is again to replace
|·| by ‖·‖. This allows us to raise the question whether for the exponential function
exp:A → A on a Banach algebra A the functional equation of Theorem 2.68
remains valid. An inspection of the proof of 2.68 leads us up to the binomial
formula (47). Unfortunately in a Banach algebra, in general multiplication is
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not commutative. In M2(R) let x =
(

0 1
0 0

)
and y =

(
0 0
1 0

)
we have xy =(

1 0
0 0

)
6=
(

0 0
0 1

)
= yx. Then (x + y)2 = x2 + xy + yx + y2 =

(
1 0
0 1

)
6=(

2 0
0 0

)
= x2 + 2xy + y2. However, if we assume that x and y are two elements

in A which commute, i.e. satisfy xy = yx, then the binomial formula holds (cf.
2.11), and then the proof of Theorem 2.68 shows that exp(x+ y) = (expx)(exp y)
holds. In particular, if s, t ∈ K and a ∈, the elements x = s·a and t·a commute.
Therefore exp(s+ t)·a = (exp s·a)(exp t·y). Let us record this in the following

Theorem 1.35. (The Exponential Function on a Banach Algebra). Let A be a
unital Banach algebra over K ∈ {R,C}. Then the infinite series 1+x+ 1

2!x
2+ 1

3!x
3+

· · · converges absolutely for all x ∈ A and its sum defines a function exp:A→ A.
If x and y are commuting elements of A, then exp(x + y) = (expx)(exp y). In
particular,

(∗) (∀a ∈ A, s, t ∈ K) exp(s+ t)·a = (exp s·a)(exp t·a). ut

Upon taking s = 1 and t = −1 in (∗), and observing exp 0 = 1 we note that
exp a is invertible for all a ∈ A (exp a)−1 = exp−a.

Everything we said on the exponential function in a unital Banach algebra
applies, in particular, to the Banach Algebra Hom(V, V ) of all self-maps of a finite
dimensional normed K-vector space V , where Hom(V, V ) is equipped with the
operator norm. So, in particular, everything applies to the algebra Mn(K) of
n × n-matrices over the field K, equipped with the operator norm when Mn(K)
and Hom(Kn,Kn) are identified.

Affine maps
We call that a function A:V → W between vector spaces is called affine, if there
is a linear function L:V → W and a vector v ∈ V such that A(x) = L(x) + v for
all x ∈ V . ut

We note that v = A(0); thus a function A is affine iff A − A(0) is linear. An
affine function fixes the origin if and only if it is linear. Affine functions map
straight lines into straight lines. (Indeed this property characterizes affine maps.)

Postscript

Once we have a norm on a vector space V , it becomes at once a metric space via
a metric d defined by d(x, y) = ‖y−x‖ (see 1.7). And as soon as we have a metric
space before us, everything that was said in Analysis I becomes instantly available
for V and all of its subsets to which we assign the metric induced from that of V .
Among the very first examples of normed vector spaces we have observed spaces



Postscript 25

of bounded functions on a set X (Example 1.6), in which we find many spaces of
functions treated in Analysis I when X = [a, b]. We note at once that most of
these spaces are infinite dimensional (unless X is finite, in which case we retrieve
the familiar vector spaces Rn or Cn). Therefore, strong emphasis is placed on
possibly infinite dimensional normed vector spaces.

The appropriate concept is that of completeness of a metric space which was
introduced now in 1.8(i) and which specializes at once to normed vector spaces
giving us readily the idea of a Banach space (1.8(ii)). In this environment it is
now very natural to introduce the concept of uniform convergence of a sequence
of functions fn:X → K defined on a metrix space X (such as e.g. X = [a, b]) be-
cause it is nothing else but convergence in some metric space which we practiced
in Analysis I. There arises for students the problem of distinguishing between uni-
form convergence and pointwise convergence (cf. exercise E1.5 and the paragraphs
preceding it); we address this issue although for the topics discussed in this book,
pointwise convergence plays a relatively subordinate role. We recall at this point
that in Chapter 5 of Analysis I we dealt with integration without invoking the
concept of uniform convergence of functions. Now that we understand this idea,
we quickly prove that with respect to the sup-norm ‖·‖∞, the vector space I[a, b]
of Riemann integrable real valued functions on the compact interval [a, b] is a Ba-
nach space and that the Riemann integral

∫
: I(a, b) → R is a continuous linear

functional (see 1.14); the proof is remarkably casual with the aid of the Riemann
Criterion 5.12.

Hilbert spaces are special Banach spaces (1.15) and we know them from elemen-
tary linear algebra in the form of the euclidian space Rn with the inner product
(x | y) = x1y2+. . .+xnyn. Even though we shall not deal with infinite dimensional
Hilbert spaces very much in this book we wanted to make sure that at least the
basic facts of finite dimensional Hilbert space theory is available; if we restrict our
attention to the real field, which we shall do increasingly in this book, we could
just as well speak of the geometry of euclidean space. In this context, we resume
the topic of the concept of an angle which we initiated in Analysis I in 3.39. We
emphasize now that angles between nonzero vectors pertain to Hilbert spaces (or
inner product spaces) and not to normed spaces. The concept remains delicate in
the present context as well, and we settle it in a rigorous fashion by showing, using
the given inner product, that the real span of to linearly independent vectors in
any inner product space is “isometric” to the complex plane (as two dimensional
real vector space), and in it we know how to handle angles. Students tend to
overlook the fact that the “familiar” geometry of two- or three-dimensional euclid-
ian space depends crucially on the chosen inner product. We shall return to the
concept of an angle shortly when we have the concept of an arc length (Exercise
E1.7 following Theorem 1.11 in Chapter 7 below)

For the most part in Analysis II we have to handle finite dimensional normed
spaces such as Rn or Cn. They deserve a special discussion and not everything that
is said here is routinely part of a Linear Algebra course. The first important basic
fact is that on a finite dimensional normed space (that we know to be a Banach
space), all norms are equivalent (1.27)—false for infinite dimensional vector spaces.
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Thus all topological concepts on finite dimensional normed spaces are independent
of the choice of a norm (E1.28). Another principal result characteristic for finite
dimensional normed vector spaces is the characterisation of compact subsets (1.28).

In the foundations of the theory of differential calculus for functions of several
variables we need the idea of linear maps (or “operators”); of course the concept
itself is a central theme of any linear algebra course; but we need some aspects that
may not be considered standard fare in such courses, for instance, the continuity
of linear maps between finite dimensional normed spaces (1.31)—not true in the
infinite dimensional situation!—and the fact that the operator norm (1.32, 1.33)
makes the space Hom(V,W ) of all linear maps V →W between finite dimensional
normed vector spaces is itself a (finite dimensional) normed vector space and thus
a Banach space. (This remains intact for infinite dimensional Banach spaces V
and W , and for the space Hom(V,W ) of all continuous linear operators V →W .)

We have stressed the fact that for finite dimensional vector spaces V and W ,
any linear map L:V → W has a matrix after one has selected a basis in eache
of V and W . If, however, V = R

n and W = R
m, the selection has been already

made for us in the form of the standard bases; therefore Hom(Rn,Rm) is indeed
naturally isomorphic to the space Mmn(K) of m× n matrices over K. One could–
and often does identify a linear map Rn → R

m with a matrix. (Cf. 1.30 and the
remarks which follow.) There is always the little trickery that if we want to have
m × n-matrices with the alphabetic order “first m then n” we have to consider
Hom(Rn,Rm), i.e. “first n then m; this is, in the final evaluation due to the fact
that analysts always write functions on the left of the argument. A “reverse Polish
notation”, preferred by some algebraists, would obliterate this quirk.

The Banach spaces Hom(V, V ) and Mnn with respect to the operator norm
have an added feature. They have a multiplication satisfying ‖ab‖ ≤ ‖a‖·‖b‖.
They are our prime examples of a Banach algebra. We don’t have to dwell at
great length on this concept here; however, it is the right setting for an important
generalisation of the exponential function. This is important enough for us to
discuss in 1.35.


