

13. Juni 2006

8. Übung zur Analysis II

Aufgaben

A 1 (Kurz-Test)

Kreuzen Sie die richtigen Aussagen an.

	$f \in C^2(\mathbb{R}^n, \mathbb{R})$. In $x_0 \in \mathbb{R}^n$ gelte $\nabla f(x_0) = 0$ und die Hesse-Matrix $H_f(x_0)$ sei positiv definit,
das	heisst: $\forall y \neq 0 \in \mathbb{R}^n : \langle y, H_f(x_0), y \rangle_{\mathbb{R}^n} > 0$. Dann ist x_0 ein
()	globales Maximum von f .
()	lokales Maximum von f .
()	lokales Minimum von f .
()	Sattelpunkt von f .
()	globales Minimum von f .
2. Sei	$f\in C^2(\mathbb{R}^n,\mathbb{R})$ und $x_0\in\mathbb{R}^n$ sei ein globales Minimum von $f,$ dann ist die Hesse-Matrix
$H_f(:$	x_0) in x_0
()	positiv definit und symmetrisch
()	positiv semi-definit, d.h $\forall y \neq 0 \in \mathbb{R}^n : \langle y, H_f(x_0).y \rangle_{\mathbb{R}^n} \geq 0.$
()	symmetrisch.
()	indefinit, d.h garnichts.

A 2 (Kettenregel)

Berechnen Sie die Ableitung von h(x) = g(f(x)) für $f: \mathbb{R} \to \mathbb{R}^3$, $f(t) = (t, \sin t, \cos t)$ und $g: \mathbb{R}^3 \to \mathbb{R}$, $g(x_1, x_2, x_3) = x_1^2 + x_3 \cdot x_2^2$ über die Kettenregel. Desgleichen für die Funktionen $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (xy^2 + \cos y, x, y)$ und $g: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x,y,z) = (x^2 + y^2, y^2 + z^2)$

A 3 (Extremwerte 3P)

Gegeben sei die Funktion

$$f(x,y) = e^{xy + x - y}$$

innerhalb des abgeschlossenen Dreiecks D mit den Eckpunkten (0,0), (4,0) und (0,-4).

- 1. Skizzieren Sie den Definitionsbereich und tragen Sie nachfolgende Ergebnisse ein.
- 2. Untersuchen Sie die Funktion auf etwaige lokale Extremalstellen oder Sattelpunkte im Innern von D und bestimmen Sie deren Typ.
- 3. Diskutieren Sie das Verhalten von f auf dem Rand von D und ermitteln Sie die globalen Extremalstellen von f auf ganz D.

A 4 (Mittelwertsatz 3P)

Sei $f: \mathbb{R}^n \to \mathbb{R}$ gegeben und es gebe eine Konstante L > 0 so dass

$$\forall x, y \in \mathbb{R}^n : |f(x) - f(y)| \le L |x - y|_{\mathbb{R}^n}^2$$

Zeigen Sie: f ist stetig. f ist differenzierbar. f ist konstant.

A 5 (Maxima und Minima 3P vorführen)

Sei $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Bestimmen Sie die lokalen Extrema. Welche sind Maxima, welche Minima? (Hinweis: Betrachten sie im kritischen Punkt (0,0) die Funktion auf der x-Achse und der ersten Winkelhalbierenden.

A 6 (Extremwerte 3P)

Sei $f: \mathbb{R} \setminus \{0\} \times \mathbb{R} \setminus \{0\} \mapsto \mathbb{R}$, mit

$$f(x,y) = \frac{1}{y} - \frac{1}{x} - 4x + y$$
.

- 1. Überprüfen Sie alle relativen Extrema von f. Geben Sie an, ob es sich um relative Maxima oder Minima handelt.
- 2. Besitzt die Funktion ein absolutes Maximum oder Minimum auf dem Quadranten mit $x>0,\ y<0$ und $x<0,\ y>0$?

A 7 (Lineare Gleichungsysteme 3P)

Sei $A \in M^{n \times n}$ eine symmetrische Matrix. Betrachten Sie die Funktion $f: \mathbb{R}^n \to \mathbb{R}$,

$$f(x) := \langle x, A.x \rangle_{\mathbb{R}^n} - \langle b, x \rangle_{\mathbb{R}^n}$$

für gebebenes $b \in \mathbb{R}^n$. Bestimmen Sie die kritischen Punkte von f. Gibt es immer kritische Punkte für beliebige A, b?

Zeigen Sie: Wenn A positiv definit ist, dann gibt es genau einen kritischen Punkt und f hat im kritischen Punkt ein globales Minimum. Was folgt daraus für lineare Gleichungssysteme mit positiv definiter Koeffizientenmatrix?