

15. Mai 2006

4. Übung zur Analysis II

Aufgaben

A 1 (Fourierreihen 4P)

Sei $f: \mathbb{R} \mapsto \mathbb{R}$ eine 2π -periodische Funktion mit

$$f(x) = \begin{cases} x & \text{für } x \in (-\pi, \pi) \\ 0 & \text{für } x = \pi \end{cases}$$

Geben Sie die Fourierreihe von f an, untersuchen Sie sie auf Konvergenz und bestimmen Sie die Grenzfunktion.

A 2 (Fourierreihe einer geraden Funktion 4P)

Sei $f: \mathbb{R} \to \mathbb{R}$ eine über $[-\pi, \pi]$ quadratisch integrierbare Funktion, die überdies **gerade** ist, d.h. f(-x) = f(x) für alle $x \in \mathbb{R}$ Zeigen Sie:

Die Fourierreihe von f ist eine reine Cosinusreihe, hat also folgende Gestalt:

$$\frac{a_0}{2} + \sum_{k \in \mathbb{N}} a_k \cos k x \,,$$

wobei die Koeffizienten sich berechnen gemäß

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos k x \, dx, \quad k \in \mathbb{N}_0.$$

Wir vermerken an dieser Stelle, daß man mit genau derselben Methode beweisen kann, daß **ungerade** Funktionen sich durch eine reine Sinusreihe darstellen lassen, wobei sich die b_k dann nach einer analogen Formel (mit sin anstelle von cos) berechnen lassen.

A 3 (Berechnen einer Fourierreihe 4P)

Sei $g: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische Funktion mit g(x) = |x| für $x \in [-\pi, \pi]$. Geben Sie die Fourierreihe von g an, untersuchen Sie sie auf Konvergenz und bestimmen Sie die Grenzfunktion. Finden Sie mit Hilfe dieses Ergebnisses eine Reihendarstellung für $\frac{\pi^2}{8}$.

A 4 (Berechnen einer Fourierreihe 4P- vorführen)

Es sei $f: \mathbb{R} \mapsto \mathbb{R}$ eine 2π -periodische Funktion mit $f(x) = x^2$ für $x \in (-\pi, \pi)$.

- 1. Zeichnen Sie den Graphen der Finktion f auf $[-3\pi, 3\pi]$.
- 2. Stellen Sie die Fourierreihe von f auf.
- 3. Welche Funktion stellt die Fourierreihe von f auf $[-\pi,\pi]$ dar.
- 4. Geben Sie damit je eine Reihendarstellung von $\frac{\pi^2}{12}$ und $\frac{\pi^2}{6}$ an.

A 5 (Einweggleichrichter 4P)

Es sei $f: \mathbb{R} \mapsto \mathbb{R}$ eine 2π -periodische Funktion mit

$$f(x) = \begin{cases} 0 & \text{für } -\pi < x \le 0\\ \sin x & \text{für } 0 < x \le \pi \end{cases}$$

Bestimmen Sie die Fourierreihe von f und untersuchen Sie die Fourierreihe auf gleichmässige Konvergenz.