

8. Mai 2006

3. Übung zur Analysis II

Aufgaben

A 1 (Potenzreihen und Taylorreihen) (6 Punkte)

Wir wollen den Satz 7.21 beweisen. Sei dazu $f(x) = \sum_{n=0}^{\infty} a_n x^n$, wobei die Reihe den Konvergenzradius R > 0 habe.

1. Zeige, dass f auf (-R, R) unendlich oft differenzierbar ist und dass gilt

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}.$$

- 2. Folgere $f^{(k)}(0) = k! a_k$.
- 3. Beweise: f ist auf (-R, R) reell analytisch und die Taylorreihe von f um dem Punkt 0 stimmt auf diesem Intervall mit der Potenzreihe überein.
- 4. Finde eine elegante Lösung zu der Klausuraufgabe: Berechne das Taylor-Polynom 3. Grades um den Entwicklungspunkt 0 der Funktion

$$f(x) = \frac{x^2}{1 - x^2}.$$

${f A}$ 2 (P Gegenbeispiele zum Satz von Dini) (3 Punkte)

Der Satz von Dini (Übung 2) benötigt die drei folgenden Voraussetzungen:

- Das Intervall *I* ist kompakt.
- $f_n(x) \leq f_{n+1}(x)$ für alle $x \in I$ (Monotonie in jedem Punkt x).
- Die Grenzfunktion ist stetig.

Finde jeweils eine Folge $(f_n) \subset C(I; \mathbb{R})$, die punktweise gegen eine Grenzfunktion f konvergiert und die jeweils eine der drei Voraussetzungen nicht erfüllt (aber beide anderen), und so dass die Konvergenz $f_n \xrightarrow{n \to \infty} f$ nicht gleichmäßig ist.

A 3 (Gleichmäßige Konvergenz und Integrale) (3 Punkte)

Zeige, dass die Folge von Funktionen (f_n) mit $f_n:[0,\infty)\to\mathbb{R}$, $f_n(x):=\frac{x}{n^2}e^{-\frac{x}{n}}$ für $n\to\infty$ gleichmäßig gegen die Nullfunktion konvergiert, jedoch

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = 1 \neq \int_0^\infty 0 dx.$$

Widerspricht dies Satz 9.12 (a)?

A 4 (Ein paar Beispielfolgen) (6 Punkte)

Untersuche die folgenden Funktionenfolgen bzw. -reihen auf punktweise und gleichmäßige Konvergenz:

(a)
$$f_n = \sqrt[n]{n^2 x^3}$$
, $x \in [0, 5]$; (b) $\sum_{n=1}^{\infty} \frac{nx^2}{n^3 + x^3}$, $x \in [0, 1]$; (c) $g_n = \sin \frac{x}{n}$, $x \in \mathbb{R}$.

A 5 (Der Raum der stetig differenzierbaren Funktionen) (5 Punkte)

Auf der Menge $C^1([0,1])$ der stetig differenzierbaren Funktionen von [0,1] nach $\mathbb R$ definieren wir die Abbildung $\|\cdot\|$ durch

$$||f|| := ||f||_{\infty} + ||f'||_{\infty}$$

für $f \in C^1([0,1])$.

- 1. Zeige, dass $C^1([0,1])$ ein Untervektorraum des Raumes der stetigen Funktionen C([0,1]) ist und dass $\|\cdot\|$ eine Norm auf $C^1([0,1])$ ist.
- 2. Zeige, dass $(C^1([0,1]), \|\cdot\|)$ ein Banachraum ist.