

06.02.2009

Analysis II für M, HLM, Ph

13. Tutorium

Gruppenübung

G 36 Satz von Cavalieri

Es sei $A \subseteq \mathbb{R}^n$ eine Jordan-meßbare Menge, so daß der "Schnitt"

$$A_{x_n} = \{(x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \mid (x_1, \dots, x_{n-1}, x_n) \in A\}$$

für jedes $x_n \in \mathbb{R}$ Jordan-messbar ist.

a) Zeige:

$$|A| = \int_{I} |A_{x_n}| dx_n,$$

wobei I ein geeignetes Intervall ist, so daß $A \subseteq \mathbb{R}^{n-1} \times I$.

b) Berechne mit Hilfe dieser Aussage das Volumen V_4 der Einheitskugel $\{x \in \mathbb{R}^4 \mid ||x||_2 \le 1\}$ im \mathbb{R}^4 .

G 37 Rotationsinvarianz des Integrals

Zeige, daß das Integral rotationsinvariant ist: Sei A eine orthogonale Matrix mit $\det(A) = 1$. Zeige: für kompakte, Jordan-meßbare $Q \subset \mathbb{R}^n$ und stetige f gilt:

$$\int_{A^{-1}(Q)} f(Ax)dx = \int_{Q} f(y)dy.$$

G38 Jordansche Nullmengen

Beweise folgenden Satz aus Heuser:

Sei $N \subset \mathbb{R}^p$ eine Jordansche Nullmenge und $g: N \to \mathbb{R}^q$ $(q \geq p)$ eine Lipschitz-stetige Abbildung. Dann ist g(N) eine Jordansche Nullmenge in \mathbb{R}^q .