

20.07.2006

Analysis 1 für M, LaG und Ph, SS 2006, Tutorium 14 Polarkoordinatendarstellung komplexer Zahlen

T 52 Das Ziel dieser Aufgabe ist zu Zeigen: Zu jeder komplexen Zahl $z \in \mathbb{C}^{\times}$ existiert genau ein $\varphi \in [0, 2\pi[$ mit $z = |z|e^{i\varphi}.$

Deshalb betrachten wir die komplexe Zahl $u = \frac{z}{|z|} = \alpha + i\beta$ für $\alpha, \beta \in \mathbb{R}$ und suchen wir ein $\varphi \in [0, 2\pi[$ mit $(\cos \varphi, \sin \varphi) = (\alpha, \beta).$

(a) Zeigen Sie, dass wir uns auf den Fall $\alpha,\ \beta\geq 0$ einschränken können.

Hinweis: Benutzen Sie

$$\cos(-\varphi) = \cos(\varphi), \quad \sin(-\varphi) = -\sin(\varphi),$$

$$\cos(\pi + \varphi) = -\cos(\varphi), \quad \sin(\pi + \varphi) = -\sin(\varphi) \quad \text{und}$$

$$\cos(\pi - \varphi) = -\cos(\varphi), \quad \sin(\pi - \varphi) = \sin(\varphi).$$

- (b) Überprüfen Sie, dass $\alpha^2 + \beta^2 = 1$ gilt.
- (c) Verwenden Sie den Zwischenwertsatz auf $[0, \frac{\pi}{2}]$ um zu zeigen, dass $\varphi \in [0, \frac{\pi}{2}]$ existiert mit $\cos \varphi = \alpha$. Zeigen Sie, dass $\beta = \sin \varphi$ gilt.
- (d) Zeigen Sie, dass $z = |z|e^{i\varphi}$ gilt.
- (e) Zeigen Sie, dass φ eindeutig ist.

T 53 Zeigen Sie: Ist $z = |z|e^{i\varphi}$, $w = |w|e^{i\psi}$, so

$$zw = |z||w|e^{i(\varphi+\psi)} = |zw|e^{i(\varphi+\psi)}.$$

T 54 Zeigen Sie, dass die Gleichung $z^n=1$ in $\mathbb C$ genau n Lösungen hat, die durch

$$\{e^{\frac{k}{n}2\pi i}: k=0,\cdots,n-1\}$$

gegeben sind.

- **T 55** Bestimmen Sie die Quadratwurzeln für die komplexen Zahlen z = -1 und z = i.
- **T 56** Bestimmen Sie die Polarkoordinatendarstellung von

$$z_1 = (1+i)^{\frac{1}{2}}, \quad z_2 = (-8+i8\sqrt{3})^{\frac{1}{4}}, \quad z_3 = i^{\frac{1}{3}}.$$

T 57 Es seien zwei Funktionen ('Schwingungen')

$$f_1(x) = a_1 \sin(\varphi_1 + \omega x), \quad f_2(x) = a_2 \sin(\varphi_2 + \omega x)$$

(Man nennt $a_1, a_2 \in \mathbb{R}$ die Amplituden, $\varphi_1, \varphi_2 \in \mathbb{R}$ die Phasen und $\frac{\omega}{2\pi} > 0$ die Frequenz.) Stelle Sie die Summe

$$f := f_1 + f_2$$

in der Form

$$f(x) = A\sin(\Phi + \omega x)$$

dar, d.h. bestimmen Sie A und Φ .

(Hinweis: Verwenden Sie die Darstellung $\sin x = \text{Im}(e^{ix})$ für $x \in \mathbb{R}$).