PD dr. Ralf Gramlich



21. Juni 2006

# Analysis I für M, LaG und Ph, SS 2006, Übung 10

## Gruppenübung

#### G 30 (Konvergenzkriterien für Reihen).

- (a) Untersuchen Sie die Reihe  $\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k+(-1)^k}$  mit Hilfe des Quotientenkriteriums und des Wurzelkriteriums auf Konvergenz.
- (b) Nach Bemerkung III.4.11 (c) divergiert eine Reihe  $\sum_{n=1}^{\infty} c_n$  mit  $c_n \neq 0$ , wenn  $\liminf \left| \frac{c_{n+1}}{c_n} \right| > 1$ . Folgt die Divergenz auch schon, wenn nur

$$\limsup \left| \frac{c_{n+1}}{c_n} \right| > 1 ?$$

Hinweis: Aufgabenteil (a).

## G 31 (Konvergenz von Potenzreihen).

- (a) Für welche  $z \in \mathbb{R}$  konvergiert die Reihe  $\sum_{n=0}^{\infty} z^n$ ? Was ist der Konvergenzradius dieser Potenzreihe?
- (b) Finden Sie den Konvergenzradius der komplexen Potenzreihe  $\sum_{n=0}^{\infty} a_n z^n$  mit

$$a_{2k} = 0$$
,  $a_{2k+1} = \frac{(-1)^k}{2k+1}$  für  $k \in \mathbb{N}_0$ .

(c) Für welche  $x \in \mathbb{R}$  konvergiert die unendliche Reihe

$$\sum_{k=0}^{\infty} \frac{(x-2)^k}{3^{2k+1} \cdot k} ?$$

#### G32 (Konvergenzradien).

Es sei  $\sum_{n=0}^{\infty} a_n z^n$  eine Potenzreihe mit Konvergenzradius  $R \in [0, \infty]$ . Zeigen Sie:

- (a) Für jedes  $m \in \mathbb{N}$  hat die Potenzreihe  $\sum_{n=0}^{\infty} n^m a_n z^n$  ebenfalls den Konvergenzradius R
- (b) Ist  $p \colon \mathbb{C} \to \mathbb{C}$  eine Polynomfunktion der Form

$$p(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_0$$

mit  $m \in \mathbb{N}_0, c_0, \ldots, c_m \in \mathbb{C}$  und  $c_m \neq 0$ , so hat die Potenzreihe  $\sum_{n=0}^{\infty} p(n) a_n z^n$  ebenfalls den Konvergenzradius R.

(c) Für p wie in (b) hat die Potenzreihe  $\sum_{n=0}^{\infty} p(n)z^n$  den Konvergenzradius 1.

#### Hausübung

## H 34 (Konvergenzradien).

Es sei  $\sum_{n=0}^{\infty} a_n z^n$  eine Potenzreihe mit Konvergenzradius  $R \in [0, \infty]$  und  $p \colon \mathbb{C} \to \mathbb{C}$  eine Polynomfunktion derart, dass  $p(n) \neq 0$  für alle  $n \in \mathbb{N}_0$ . Zeigen Sie, dass auch die Potenzreihe  $\sum_{n=0}^{\infty} \frac{a_n}{p(n)} z^n$  den Konvergenzradius R hat.

## H 35 (Konvergenz in Abhängigkeit von Parametern).

- (a) Für welche  $\alpha \in \mathbb{Q}$  konvergiert die Reihe  $\sum_{n=1}^{\infty} \left(\frac{n^2+n+1}{n^3+2n+5}\right)^{\alpha}$ ?
- (b) Für welche  $\alpha \in \mathbb{Q}_+$  und  $x \ge 0$  konvergiert die Reihe  $\sum_{n=1}^{\infty} \left(\frac{n^2+n+1}{n^3+2n+5}\right)^{\alpha} x^n$ ?

## H 36 (Verdichtungskriterium).

Sei  $(a_n)_{n\in\mathbb{N}}$  eine monoton fallende Folge nicht negativer reeller Zahlen. Zeigen Sie: Konvergiert  $\sum_{n=1}^{\infty} a_n$ , so folgt

$$\lim_{n\to\infty} n \, a_n = 0.$$

H 37 (Zusammenfassen von Blöcken in konvergenten Reihen). Es sei  $\sum_{n=1}^{\infty} c_n$  eine konvergente Reihe komplexer Zahlen und  $1 = n_1 < n_2 < n_3 < \cdots$ . Zeigen Sie, dass dann auch die Reihe  $\sum_{k=1}^{\infty} \left(\sum_{n=n_k}^{n_{k+1}-1} c_n\right)$  konvergiert, mit Grenzwert

$$\sum_{k=1}^{\infty} \left( \sum_{n=n_k}^{n_{k+1}-1} c_n \right) = \sum_{n=1}^{\infty} c_n .$$

## H 38 (Dezimalentwicklungen und rationale Zahlen).

Wir betrachten eine reelle Zahl  $x \ge 0$ , mit Dezimalentwicklung  $x = \sum_{k=-m}^{\infty} d_k \cdot 10^{-k}$ , wobei  $d_k \in \{0, 1, \dots, 9\}$ .

(a) Zeigen Sie: Ist die Dezimalentwicklung periodisch in dem Sinne, dass es ein  $m_0 \geq -m$  und ein  $\ell \in \mathbb{N}$  gibt derart, dass  $d_k = d_{k+\ell}$  für alle  $k \geq m_0$ , so ist x eine rationale Zahl.

Hinweis: Fast alle Summanden können zu Blöcken der Form  $C \cdot 10^{-\ell \cdot k}$  zusammengefasst werden mit einer Konstanten  $C \in \mathbb{N}_0$ . Wenden Sie nun die geometrische Summenformel an.

(b) Zeigen Sie, dass umgekehrt auch jede Dezimalentwicklung einer rationalen Zahl  $x \ge 0$  periodisch ist.

Hinweis: Nach Abziehen einer ganzen Zahl (die wir problemlos durch Zehnerpotenzen ausdrücken können) dürfen wir annehmen, dass  $x \in [0,1[$ , etwa  $x=\frac{z}{n}$  mit  $z \in \mathbb{N}_0, n \in \mathbb{N}$  und n>z. Eine Dezimalentwicklung  $x=0.d_1d_2\cdots$  erhält man wie folgt:

Es existiert genau ein  $d_1 \in \{0, 1, \dots, 9\}$  derart, dass

$$10 \cdot z = d_1 \cdot n + r_1$$

für ein  $r_1 \in \{0,1,\ldots,n-1\}$ . Dann ist also  $\frac{z}{n} = \frac{d_1}{10} + \frac{1}{10} \cdot \frac{r_1}{n}$ . Nun existiert genau ein  $d_2 \in \{0,1,\ldots,9\}$  derart, dass

$$10 \cdot r_1 = d_2 \cdot n + r_2$$

für ein  $r_2 \in \{0, 1, \dots, n-1\}$ . Dann ist  $\frac{z}{n} = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{1}{10^2} \cdot \frac{r_2}{n}$ . Analog geht es weiter.

Können die Zahlen  $r_k$  für  $k\in\mathbb{N}$  alle verschieden sein?

- (c) Ist die reelle Zahl  $x := \sum_{k=1}^{\infty} 10^{-k^2}$  rational?
- (d) Warum gilt 0.999999... = 1?