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Chapter 1

Introduction

1.1 Motivating Examples

Linear algebra is concerned with the study of vector spaces. It investigates
and isolates mathematical structure and methods involving the concept lin-
earity. Instances of linearity arise in many different contexts of mathematics
and its applications, and linear algebra provides a uniform framework for
their treatment.

As is typical in mathematics, the extraction of common key features that
are observed in various seemingly unrelated areas gives rise to an abstraction
and simplification which allows to study these crucial features in isolation.
The results of this investigation can then be carried back into all those areas
where the underlying common feature arises, with the benefit of a unifying
perspective. Linear algebra is a very good example of a branch of mathe-
matics motivated by the observation of structural commonality across a wide
range of mathematical experience.

In this rather informal introductory chapter, we consider a number of
(partly very familiar) examples that may serve as a motivation for the sys-
tematic general study of “spaces with a linear structure” which is the core
topic of linear algebra.

1.1.1 The two-dimensional real plane

The plane of basic planar geometry is modelled as R2 = R × R, the set of
ordered pairs [geordnete Paare] (x, y) of real numbers x, y ∈ R.
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p = (x, y)
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One may also think of the directed arrow pointing from the origin O =
(0, 0) to the position p = (x, y) as the vector [Vektor] v = (x, y). “Linear
structure” in R2 has the following features.

Vector addition [Vektoraddition] There is a natural addition over R2,
which may be introduced in two slightly different but equivalent ways.

O x1

y1

x2

y2

x1 + x2

y1 + y2
(x1 + x2, y1 + y2)

v1 + v2

//
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v1
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Arithmetically we may just lift the addition operation +R from R to R2,
applying it component-wise:

(x, y) +R2

(x′, y′) := (x+R x′, y +R y′).

At first, we explicitly index the plus signs to distinguish their different
interpretations: the new over R2 from the old over R.

Geometrically we may think of vectors v = (x, y) and v′ = (x′, y′) as
acting as translations of the plane ; the vector v+v′ is then the vector which
corresponds to the composition of the two translations, translation through
v followed by translation through v′. (Convince yourself that this leads to
the same addition operation on R2.)
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Scalar multiplication [Skalare Multiplikation] A real number r 6= 0 can
also be used to re-scale vectors in the plane. This operation is called scalar
multiplication.

r · (x, y) := (r ·R x, r ·R y).

We include scalar multiplication by r = 0, even though it maps all vectors
to the null vector 0 = (0, 0) and thus does not constitute a proper re-scaling.

Scalar multiplication is arithmetically induced by component-wise ordi-
nary multiplication over R, but is not an operation over R2 in the same sense
that ordinary multiplication is an operation over R. In scalar multiplication
a number (a scalar) from the number domain R operates on a vector v ∈ R2.

O x

y

rx

ry
(rx, ry)

rv

//

OO

v

88qqqqqqqqqqqqqqqqqqq

88qqqqqqqqqqqqqqqqqqqqqqqqqqqq

It is common practice to drop the · in multiplication notation; we shall
later mostly write rv = (rx, ry) instead of r · v = (r · x, r · y).

Remark There are several established conventions for vector notation; we
here chose to write vectors in R2 just as pairs v = (x, y) of real numbers.

One may equally well write the two components vertically, as in v =

x
y

.

In some contexts it may be useful to be able to switch between these
two styles and explicitly refer to row vectors [Zeilenvektoren] versus column
vectors [Spaltenvektoren]. Which style one adopts is largely a matter of
convention – the linear algebra remains the same.

Basic laws We isolate some simple arithmetical properties of vector addi-
tion and scalar multiplication; these are in fact the crucial features of what
“linear structure” means, and will later be our axioms [Axiome] for vector
spaces [Vektorräume]. In the following we use v,v1, . . . for arbitrary vectors
(elements of R2 in our case) and r, s for arbitrary scalars (elements of the
number domain R in this case).
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V1 vector addition is associative [assoziativ]. For all v1,v2,v3:

(v1 + v2) + v3 = v1 + (v2 + v3).

V2 vector addition has a neutral element [neutrales Element].
There is a null vector 0 such that for all v:

v + 0 = 0 + v = v.

In R2, 0 = (0, 0) ∈ R2 serves as the null vector.

V3 vector addition has inverses [inverse Elemente].
For every vector v there is a vector −v such that

v + (−v) = (−v) + v = 0.

For v = (x, y) ∈ R2, −v := (−x,−y) is as desired.

V4 vector addition is commutative [kommutativ].
For all v1,v2:

v1 + v2 = v2 + v1.

V5 scalar multiplication is associative.
For all vectors v and scalars r, s:

r ·
(
s · v

)
= (r · s) · v.

V6 scalar multiplication has a neutral element 1.
For all vectors v:

1 · v = v.

V7 scalar multiplication is distributive [distributiv] w.r.t. the scalar.
For all vectors v and all scalars r, s:

(r + s) · v = r · v + s · v.

V8 scalar multiplication is distributive w.r.t. the vector.
For all vectors v1,v2 and all scalars r:

r ·
(
v1 + v2

)
=
(
r · v1

)
+
(
r · v2

)
.
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All the laws in the axioms (V1-4) are immediate consequences of the corre-
sponding properties of ordinary addition over R, since +R2

is component-wise
+R. Similarly (V5/6) are immediate from corresponding properties of multi-
plication over R, because of the way in which scalar multiplication between
R and R2 is component-wise ordinary multiplication. Similar comments ap-
ply to the distributive laws for scalar multiplication (V7/8), but here the
relationship is slightly more interesting because of the asymmetric nature of
scalar multiplication.

For associative operations like +, we freely write terms like a+ b+ c+ d
without parentheses, as associativity guarantees that precedence does not
matter; similarly for r · s · v.

Exercise 1.1.1 Annotate all + signs in the identities in (V1-8) to make clear
whether they take place over R or over R2, and similarly mark those places
where · stands for scalar multiplication and where it stands for ordinary
multiplication over R.

Linear equations over R2 and lines in the plane

O
//

OO ppppppppppppppppppppppppppppppppppppppp

Consider a line [Gerade] in the real plane. It can be thought of as the
solution set of a linear equation [lineare Gleichung] of the form

E : ax+ by = c.

In the equation, x and y are regarded as variables, a, b, c are fixed con-
stants, called the coefficients of E. The solution set [Lösungsmenge] of the
equation E is

S(E) = {(x, y) ∈ R2 : ax+ by = c}.

Exercise 1.1.2 Determine coefficients a, b, c for a linear equation E so that
its solution set is the line through points p1 = (x1, y1) and p2 = (x2, y2) for
two distinct given points p1 6= p2 in the plane.



12 Linear Algebra I — Martin Otto 2013

Looking at arbitrary linear equations of the form E, we may distinguish
two degenerate cases:

(i) a = b = c = 0: S(E) = R2 is not a line but the entire plane.

(ii) a = b = 0 and c 6= 0: S(E) = ∅ is empty (no solutions).

In all other cases, S(E) really is a line. What does that mean arithmeti-
cally or algebraically, though? What can we say about the structure of the
solution set in the remaining, non-degenerate cases?

It is useful to analyse the solution set of an arbitrary linear equation

E : ax+ by = c

in terms of the associated homogeneous equation

E∗ : ax+ by = 0.

Generally a linear equation is called homogeneous if the right-hand side is 0.

Observation 1.1.1 The solution set S(E∗) of any homogeneous linear equa-
tion is non-empty and closed under scalar multiplication and vector addition
over R2:

(a) 0 = (0, 0) ∈ S(E∗).

(b) if v ∈ S(E∗), then for any r ∈ R also rv ∈ S(E∗).

(c) if v,v′ ∈ S(E∗), then also v + v′ ∈ S(E∗).

In other words, the solution set of a homogeneous linear equation in the
linear space R2 has itself the structure of a linear space; scalar multiplication
and vector addition in the surrounding space naturally restrict to the solution
space and obey the same laws (V1-8) in restriction to this subspace. We shall
later consider such linear subspaces systematically.

Exercise 1.1.3 (i) Prove the claims of the observation.

(ii) Verify that the laws (V1-8) hold in restriction to S(E∗).

We return to the arbitrary linear equation

E : ax+ by = c

Observation 1.1.2 E is homogeneous (E∗ = E) if, and only if 0 ∈ S(E).
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Proof. (1) Suppose first that c = 0. E : a · x + b · y = 0. Then
(x, y) = 0 = (0, 0) satisfies the equation, and thus 0 ∈ S(E).

Conversely, if 0 = (0, 0) ∈ S(E), then (x, y) = (0, 0) satisfies the equation
E : a · x+ b · y = c. Therefore a · 0 + b · 0 = c and thus c = 0 follows.

2

Suppose now that E has at least one solution, S(E) 6= ∅. So there is
some v0 ∈ S(E) [we already know that v0 6= 0 if E is not homogeneous.] We
claim that then the whole solution set has the form

S(E) =
{
v0 + v : v ∈ S(E∗)

}
.

In other words it is the result of translating the solution set of the asso-
ciated homogeneous equation through v0 where v0 is any fixed but arbitrary
solution of E.

Lemma 1.1.3 Consider the linear equation E : a ·x+ b · y = c over R2, with
the associated homogeneous equation E∗ : a · x+ b · y = 0.

(a) S(E) = ∅ if and only if c 6= 0 and a = b = 0.

(b) Otherwise, if v0 ∈ S(E) then

S(E) =
{
v0 + v : v ∈ S(E∗)

}
.

Proof. (1) (a) “If”: let a = b = 0 and c 6= 0. Then E is unsolvable as
the left-hand side equals 0 for all x, y while the right-hand side is c 6= 0.

“Only if”: let S(E) = ∅. Firstly, c cannot be 0, as otherwise 0 ∈ S(E) =
S(E∗). Similarly, if we had a 6= 0, then (x, y) = (c/a, 0) ∈ S(E) and if b 6= 0,
then (x, y) = (0, c/b) ∈ S(E).

(b) Let v0 = (x0, y0) ∈ S(E), so that a · x0 + b · y0 = c.
We show the set equality S(E) =

{
v0 + v : v ∈ S(E∗)

}
by showing two

inclusions.
S(E) ⊆

{
v0 + v : v ∈ S(E∗)

}
:

Let v′ = (x′, y′) ∈ S(E). Then a · x′+ b · y′ = c. As also a · x0 + b · y0 = c,
we have that a · x′ + b · y′ − (a · x0 + b · y0) = a · (x′ − x0) + b · (y′ − y0) = 0,
whence v := (x′ − x0, y′ − y0) is a solution of E∗. Therefore v′ = v0 + v for
this v ∈ S(E∗).{

v0 + v : v ∈ S(E∗)
}
⊆ S(E):

1Compare section 1.2.6 for basic proof patterns encountered in these simple examples.
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Let v′ = v0+v where v = (x, y) ∈ S(E∗). Note that v′ = (x0+x, y0+y).
As a · x+ b · y = 0 and a · x0 + b · y0 = c, we have a · (x0 + x) + b · (y0 + y) = c
and therefore v′ ∈ S(E).

2

Parametric representation Let E : a·x+b·y = c be such that S(E) 6= ∅,
and S(E) 6= R2 (these are the degenerate cases). From what we saw above
E is non-degenerate if and only if (a, b) 6= (0, 0). In this case we want to turn
Lemma 1.1.3 (b) into an explicit parametric form. Put

w := (−b, a). (2)

We check that w ∈ S(E∗), and that – under the assumption that E is non-
degenerate – S(E∗) = {λ·w : λ ∈ R

}
. Combining this with Lemma 1.1.3 (b),

we interpret v0 ∈ S(E) as an arbitrary point on the line described by E,
which in parametric form is therefore the set of points

v0 + λ ·w (λ ∈ R).

1.1.2 Three-dimensional real space

Essentially everything we did above in the two-dimensional case carries over
to an analogous treatment of the n-dimensional case of Rn. Because it is the
second most intuitive case, and still easy to visualise, we now look at the
three-dimensional case of R3.

R3 = R× R× R =
{

(x, y, z) : x, y, z ∈ R
}

is the set of three-tuples (triples) of real numbers. Addition and scalar mul-
tiplication over R3 are defined (component-wise) according to

(x1, y1, z1) + (x2, y2, z2) := (x1 + x2, y1 + y2, z1 + z2)

and
r(x, y, z) := (rx, ry, rz),

for arbitrary (x, y, z), (x1, y1, z1), (x2, y2, z2) ∈ R3 and r ∈ R.
The resulting structure on R3, with this addition and scalar multiplica-

tion, and null vector 0 = (0, 0, 0) satisfies the laws (axioms) (V1-8) from
above. (Verify this, as an exercise!)

2Geometrically, the vector (−b, a) is orthogonal to the vector (a, b) formed by the
coefficients of E∗.
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Linear equations over R3

A linear equation over R3 takes the form

E : ax+ by + cz = d,

for coefficients a, b, c, d ∈ R. Its solution set is

S(E) =
{

(x, y, z) ∈ R3 : ax+ by + cz = d
}
.

Again, we consider the associated homogeneous equation

E∗ : ax+ by + cz = 0.

In complete analogy with Observation 1.1.1 above, we find firstly that
S(E∗) contains 0 and is closed under vector addition and scalar multiplication
(and thus is a linear subspace). Further, in analogy with Lemma 1.1.3, either
S(E) = ∅ or, whenever S(E) 6= ∅, then

S(E) =
{
v0 + v : v ∈ S(E∗)

}
for any fixed but arbitrary solution v0 ∈ S(E).

Exercise 1.1.4 Check the above claims and try to give rigorous proofs.
Find out in exactly which cases E has no solution, and in exactly which cases
S(E) = R3. Call these cases degenerate.
Convince yourself, firstly in an example, that in the non-degenerate case the
solution set ∅ 6= S(E) 6= R3 geometrically corresponds to a plane within R3.
Furthermore, this plane contains the origin (null vector 0) iff E is homoge-
neous.3 Can you provide a parametric representation of the set of points in
such a plane?

1.1.3 Systems of linear equations over Rn

A system of linear equations [lineares Gleichungssystem] consists of a tuple
of linear equations that are to be solved simultaneously. The solution set is
the intersection of the solution sets of the individual equations.

A single linear equation over Rn has the general form

E : a1x1 + · · ·+ anxn = b

3“iff” is shorthand for “if, and only if”, logical equivalence or bi-implication.
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with coefficients [Koeffizienten] a1, . . . , an, b ∈ R and variables [Variable,
Unbestimmte] x1, . . . , xn.

Considering a system of m linear equations E1, . . . , Em over Rn, we index
the coefficients doubly such that

Ei : ai1x1 + · · ·+ ainxn = bi

is the i-th equation with coefficients ai1, . . . , ain, bi. The entire system is

E :



a11x1 + a12x2 + · · ·+ a1nxn = b1 (E1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (E2)

a31x1 + a32x2 + · · ·+ a3nxn = b3 (E3)
...

am1x1 + am2x2 + · · ·+ amnxn = bm (Em)

with m rows [Zeilen] and n columns [Spalten] on the left-hand side and one
on the right-hand side. Its solution set is

S(E) =
{
v = (x1, . . . , xn) ∈ Rn : v satisfies Ei for i = 1, . . . ,m

}
= S(E1) ∩ S(E2) ∩ . . . ∩ S(Em) =

⋂
i=1,...,m S(Ei).

The associated homogeneous system E∗ is obtained by replacing the right-
hand sides (the coefficients bi) by 0.

With the same arguments as in Observation 1.1.1 and Lemma 1.1.3 (b)
we find the following.

Lemma 1.1.4 Let E be a system of linear equations over Rn.

(i) The solution set of the associated homogeneous system E∗ contains
the null vector 0 ∈ Rn and is closed under vector addition and scalar
multiplication (and thus is a linear subspace).

(ii) If S(E) 6= ∅ and v0 ∈ S(E) is any fixed but arbitrary solution, then

S(E) =
{
v0 + v : v ∈ S(E∗)

}
.

An analogue of Lemma 1.1.3 (a), which would tell us when the equations
in E have any simultaneous solutions at all, is not so easily available at first.
Consider for instance the different ways in which three planes in R3 may
intersect or fail to intersect.
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Remark 1.1.5 For a slightly different perspective, consider the vectors of
coefficients formed by the columns of E, ai = (a1i, a2i, . . . , ami) ∈ Rm for i =
1, . . . , n and b = (b1, . . . , bm) ∈ Rm. Then E can be rewritten equivalently
as

x1a1 + x2a2 + . . .+ xnan = b.

(Note, incidentally, that in order to align this view with the usual layout of
the system E, one might prefer to think of the ai and b as column vectors ;
for the mathematics of the equation, though, this makes no difference.)

We shall exploit this view further in later chapters. For now we stick with
the focus on rows.

We now explore a well-known classical method for the effective solution
of a system of linear equations. In the first step we consider individual
transformations (of the schema of coefficients in E) that leave the solution
set invariant. We then use these transformations systematically to find out
whether E has any solutions, and if so, to find them.

Row transformations

If Ei : ai1x1 + . . .+ ainxn = bi and Ej : aj1x1 + . . .+ ajnxn = bj are rows of E
and r ∈ R is a scalar, we let

(i) rEi be the equation

rEi : (rai1)x1 + . . .+ (rain)xn = rbi.

(ii) Ei + rEj be the equation

Ei + rEj : (ai1 + raj1)x1 + . . .+ (ain + rajn)xn = bi + rbj.

Lemma 1.1.6 The following transformations on a system of linear equa-
tions leave the solution set invariant, i.e., lead from E to a new system E ′

that is equivalent with E.

(T1) exchanging two rows.

(T2) replacing some Ei by rEi for a scalar r 6= 0.

(T3) replacing Ei by Ei + rEj for some scalar r and some j 6= i.
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Proof. It is obvious that (T1) does not affect S(E) as it just corresponds
to a re-labelling of the equations.

For (T2), it is clear that S(Ei) = S(rEi) for r 6= 0: for any (x1, . . . , xn)

ai1x1 + . . .+ ainxn = bi iff rai1x1 + . . .+ rainxn = rbi.

For (T3) we show for all v = (x1, . . . , xn):

v ∈ S(Ei) ∩ S(Ej) iff v ∈ S(Ei + rEj) ∩ S(Ej).

Assume first that v ∈ S(Ei) ∩ S(Ej).
Then ai1x1 + . . .+ ainxn = bi and aj1x1 + . . .+ ajnxn = bj together imply

that
(ai1 + raj1)x1 + . . .+ (ain + rajn)xn

= (ai1x1 + . . .+ ainxn) + r(aj1x1 + . . .+ ajnxn)
= bi + rbj.

Therefore also v ∈ S(Ei + rEj).
If, conversely, v ∈ S(Ei+rEj)∩S(Ej), we may appeal to the implication

from left to right we just proved for arbitrary r, use it for −r in place of r
and get that v ∈ S((Ei + rEj) + (−r)Ej). But (Ei + rEj) + (−r)Ej is Ei,
whence v ∈ S(Ei) follows.

2

Gauß-Jordan algorithm

The basis of this algorithm for solving any system of linear equations is
also referred to as Gaussian elimination, because it successively eliminates
variables from some equations by means of the above equivalence transfor-
mations. The resulting system finally is of a form (upper triangle or echelon
form [obere Dreiecksgestalt]) in which the solutions (if any) can be read off.

Key step Let

E :



a11x1 + a12x2 + · · ·+ a1nxn = b1 (E1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (E2)

a31x1 + a32x2 + · · ·+ a3nxn = b3 (E3)
...

am1x1 + am2x2 + · · ·+ amnxn = bm (Em)
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Assume first that a11 6= 0. Then by repeated application of (T3), we may
replace

E2 by E2 + (−a21/a11)E1

E3 by E3 + (−a31/a11)E1

...

Em by Em + (−am1/a11)E1

with the result that the only remaining non-zero coefficient in the first column
is a11:

E ′ :



a11x1 + a12x2 + · · ·+ a1nxn = b1 (E1)

a′22x2 + · · ·+ a′2nxn = b′2 (E ′2)

a′32x2 + · · ·+ a′3nxn = b′3 (E ′3)
...

a′m2x2 + · · ·+ a′mnxn = b′m (E ′m)

If a11 = 0 but some other aj1 6= 0 we may apply the above steps after
first exchanging E1 with Ej, according to (T1).

In the remaining case that ai1 = 0 for all i, E itself already has the shape
of E ′ above, even with a11 = 0.

Iterated application of the key step Starting with E with m rows, we
apply the key step to eliminate all coefficients in the first column in rows
2, . . . ,m;

We then keep the first row unchanged and apply the key step again to
treat the first remaining non-zero column in

E ′′ :


a′22x2 + · · ·+ a′2nxn = b′2 (E ′2)

a′32x2 + · · ·+ a′3nxn = b′3 (E ′3)
...

a′m2x2 + · · ·+ a′mnxn = b′m (E ′m)

In each round we reduce the number of rows and columns still to be
transformed by at least one. After at most max(m,n) rounds therefore we
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obtain a system

Ê :



â1j1xj1 + . . .+ â1j2xj2 + . . .+ â1jrxjr + . . .+ â1nxn = b̂1
â2j2xj2 + . . .+ â2jrxjr + . . .+ â2nxn = b̂2

· · · · · ·
ârjrxjr + . . .+ ârnxn = b̂r

0 = b̂r+1

0 = b̂r+2

...

0 = b̂m

in upper triangle (echelon) form:

• r is the number of rows whose left-hand sides have not been completely
eliminated (note in particular that r = m can occur).

• âiji 6= 0 is the first non-vanishing coefficient on the left-hand side in
row i for i = 1, . . . , r; these coefficients are called pivot elements ; the
corresponding variables xjifor i = 1, . . . , r are called pivot variables.

• the remaining rows r + 1, . . . ,m are those whose left-hand sides have
been eliminated completely.

Applications of (T2) to the first r rows can further be used to make all pivot
elements âiji = 1 if desired.

Most importantly, S(Ê) = S(E).

Reading off the solutions

Lemma 1.1.7 For a system Ê in the above upper echelon form:

(i) S(Ê) = ∅ unless b̂r+1 = b̂r+2 = . . . = b̂m = 0.

(ii) If b̂r+1 = b̂r+2 = . . . = b̂m = 0, then the values for all variables that are
not pivot variables can be chosen arbitrarily, and matching values for
the pivot variables computed, using the i-th equation to determine xiji,
and progressing in order of i = r, r − 1, . . . , 1.

Moreover, all solutions are obtained in this way.

An obvious question that arises here, is whether the number of non-pivot
variables that can be chosen freely in S(E) = S(Ê) depends on the particular
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sequence of steps in which E was transformed into upper echelon form Ê. We
shall later see that this number is an invariant of the elimination procedure
and related to the dimension of S(E∗).

1.1.4 Linear spaces over Z2

We illustrate the point that scalar domains quite different from R give rise to
analogous useful notions of linear structure. Linear algebra over Z2 has par-
ticular relevance in computer science – e.g., in relation to boolean functions,
logic, cryptography and coding theory.

Arithmetic in Z2

[Compare section 1.3.2 for a more systematic account of Zn for any n, and
section 1.3.3 for Zp where p is prime.]

Let Z2 = {0, 1}. One may think of 0 and 1 as integers or as boolean (bit)
values here; both view points will be useful.

On Z2 we consider the following arithmetical operations of addition and
multiplication: 4

+2 0 1

0 0 1
1 1 0

·2 0 1

0 0 0
1 0 1

In terms of integer arithmetic, 0 and 1 and the operations +2 and ·2 may
be associated with the parity of integers as follows:

0 — even integers;
1 — odd integers.

Then +2 and ·2 describe the effect of ordinary addition and multiplication
on parity. For instance, (odd) · (odd) = (odd) and (odd) + (odd) = (even).

In terms of boolean values and logic, +2 is the “exclusive or” operation
xor also denoted ∨̇, while ·2 is ordinary conjunction ∧.

Exercise 1.1.5 Check the following arithmetical laws for (Z2,+, ·) where +
is +2 and · is ·2, as declared above. We use b, b1, b2, . . . to denote arbitrary
elements of Z2:

4We (at first) use subscripts in +2 and ·2 to distinguish these operations from their
counterparts in ordinary arithmetic.
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(i) + and · are associative and commutative.
For all b1, b2, b3: (b1 + b2) + b3 = b1 + (b2 + b3);

b1 + b2 = b2 + b1.
Similarly for ·.

(ii) · is distributive over +.
For all b, b2, b3: b · (b1 + b2) = (b · b1) + (b · b2).

(iii) 0 is the neutral element for +.
For all b, b+ 0 = 0 + b = b.
1 is the neutral element for ·.
For all b, b · 1 = 1 · b = b.

(iv) + has inverses.
For all b ∈ Z2 there is a −b ∈ Z2 such that b+ (−b) = 0.

(v) · has inverses for all b 6= 0.
1 · 1 = 1 (as there is only this one instance).

We now look at the space

Zn2 := (Z2)
n = Z2 × · · · × Z2︸ ︷︷ ︸

n times

of n-tuples over Z2, or of length n bit-vectors b = (b1, . . . , bn).
These can be added component-wise according to

(b1, . . . , bn) +n
2 (b′1, . . . , b

′
n) := (b1 +2 b

′
1, . . . , bn +2 b

′
n). (5)

This addition operation provides the basis for a very simple example of
a (symmetric) encryption scheme. Consider messages consisting of length n
bit vectors, so that Zn2 is our message space. Let the two parties who want
to communicate messages over an insecure channel be called A for Alice and
B for Bob (as is the custom in cryptography literature). Suppose Alice and
Bob have agreed beforehand on some bit-vector k = (k1, . . . , kn) ∈ Zn2 to be
their shared key, which they keep secret from the rest of the world.

If Alice wants to communicate message m = (m1, . . . ,mn) ∈ Zn2 to Bob,
she sends the encrypted message

m′ := m + k

5Again, the distinguishing markers for the different operations of addition will soon be
dropped.
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and Bob decrypts the bit-vector m′ that he receives, according to

m′′ := m′ + k

using the same key k. Indeed, the arithmetic of Z2 and Zn2 guarantees that
always m′′ = m. This is a simple consequence of the peculiar feature that

b+ b = 0 for all b ∈ Z2, (addition in Z2)
whence also b + b = 0 for all b ∈ Zn2 . (addition in Zn2 )

Cracking this encryption is just as hard as to come into possession of the
agreed key k – considered sufficiently unlikely in the short run if its length
n is large and if there are no other regularities to go by (!). Note that the
key is actually retrievable from any pair of plain and encrypted messages as
k = m + m′.

Example, for n = 8 and with k = (0, 0, 1, 0, 1, 1, 0, 1); remember that
addition in Zn2 is bit-wise ∨̇ (exclusive or):

m = 10010011
k = 00101101

m′ = m + k = 10111110

and m′ = 10111110
k = 00101101

m = m′ + k = 10010011

We also define scalar multiplication over Zn2 , between b = (b1, . . . , bn) ∈
Zn2 and λ ∈ Z2:

λ · (b1, . . . , bn) := (λ · b1, . . . , λ · bn).

Exercise 1.1.6 Verify that Zn2 with vector addition and scalar multipli-
cation as introduced above satisfies all the laws (V1-8) (with null vector
0 = (0, . . . , 0)).

Parity check-bit

This is a basic example from coding theory. The underlying idea is used
widely, for instance in supermarket bar-codes or in ISBN numbers. Consider
bit-vectors of length n, i.e., elements of Zn2 . Instead of using all possible
bit-vectors in Zn2 as carriers of information, we restrict ourselves to some
subspace C ⊆ Zn2 of admissible codes. The possible advantage of this is that
small errors (corruption of a few bits in one of the admissible vectors) may
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become easily detectable, or even repairable – the fundamental idea in error
detecting and error correcting codes. Linear algebra can be used to devise
such codes and to derive efficient algorithms for dealing with them. This is
particularly so for linear codes C ⊆ Zn2 , whose distinguishing feature is their
closure under addition in Zn2 .

The following code with parity check-bit provides the most fundamental
example, of a (weak) error-detecting code. Let n > 2 and consider the
following linear equation over Zn2 :

E+ : x1 + · · ·+ xn−1 + xn = 0

with solution set

C+ = S(E+) =
{

(b1, . . . , bn) ∈ Zn2 : b1 + · · ·+ bn−1 + bn = 0
}
.

Note that the linear equation E+ has coefficients over Z2, namely just 1s
on the left hand side, and 0 on the right (hence homogeneous), and is based
on addition in Z2. A bit-vector satisfies E+ iff its parity sum is even, i.e., iff
the number of 1s is even.

Exercise 1.1.7 How many bit-vectors are there in Zn2? What is the propor-
tion of bit-vectors in C+?

Check that C+ ⊆ Zn2 contains the null vector and is closed under vector
addition in Zn2 (as well as under scalar multiplication). It thus provides an
example of a linear subspace, and hence a so-called linear code.

Suppose that some information (like that on an identification tag for
goods) is coded using not arbitrary bit-vectors in Zn2 but just bit-vectors from
the subspace C+. Suppose further that some non-perfect data-transmission
(e.g. through a scanner) results in some errors but that one can mostly rely on
the fact that at most one bit gets corrupted. In this case a test whether the
resulting bit-vector (as transmitted by the scanner say) still satisfies E+ can
reliably tell whether an error has occurred or not. This is because whenever
v = (b1, . . . , bn) and v′ = (b′1, . . . , b

′
n) differ in precisely one bit, then v ∈ C+

iff v′ 6∈ C+.

From error-detecting to error-correcting

Better (and sparser) codes C ⊆ Zn2 can be devised which allow not just to
detect but even to repair corruptions that only affect a small number of bits.
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If C ⊆ Zn2 is such that any two distinct elements v,v′ ∈ C differ in at least
2t + 1 bits for some constant t, then C provides a t-error-correcting code.
If v̂ is a possibly corrupted version of v ∈ C but differs from v in at most
t places, then v is uniquely determined as the unique element of C which
differs from v̂ in at most t places. In case of linear codes C, linear algebra
provides techniques for efficient error-correction procedures in this setting.

Boolean functions in two variables

This is another example of spaces Zn2 in the context of boolean algebra and
propositional logic. Consider the set B2 of all boolean functions in two vari-
ables (which we here denote r and s)

f : Z2 × Z2 −→ Z2

(r, s) 7−→ f(r, s)

Each such f ∈ B2 is fully represented by its table of values

r s f(r, s)

0 0 f(0, 0)
0 1 f(0, 1)
1 0 f(1, 0)
1 1 f(1, 1)

or more succinctly by just the 4-bit vector

f := (f(0, 0), f(0, 1), f(1, 0), f(1, 1)) ∈ Z4
2.

We have for instance the following correspondences:

function f ∈ B2 arithmetical description of f vector f ∈ Z4
2

constant 0 (r, s) 7→ 0 (0, 0, 0, 0)
constant 1 (r, s) 7→ 1 (1, 1, 1, 1)

projection r (r, s) 7→ r (0, 0, 1, 1)
projection s (r, s) 7→ s (0, 1, 0, 1)

negation of r,¬r (r, s) 7→ 1− r (1, 1, 0, 0)
negation of s,¬s (r, s) 7→ 1− s (1, 0, 1, 0)

exclusive or, ∨̇ (xor) (r, s) 7→ r +2 s (0, 1, 1, 0)
conjunction,∧ (r, s) 7→ r ·2 s (0, 0, 0, 1)

Sheffer stroke, | (nand) (r, s) 7→ 1− r ·2 s (1, 1, 1, 0)
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The map
: B2 −→ Z4

2

f 7−→ f

is a bijection. In other words, it establishes a one-to-one and onto correspon-
dence between the sets B2 and Z4

2. Compare section 1.2.2 on (one-to-one)
functions and related notions. (In fact more structure is preserved in this
case; more on this later.)

It is an interesting fact that all functions in B2 can be expressed in terms
of compositions of just r, s and |.6 For instance, ¬r = r|r, 1 = (r|r)|r, and
r ∧ s = (r|s)|(r|s). Consider the following questions:

Is this is also true with ∨̇ (exclusive or) instead of Sheffer’s |?
If not, can all functions in B2 be expressed in terms of 0, 1, r, s, ∨̇,¬?
If not all, which functions in B2 do we get?

Lemma 1.1.8 Let f1, f2 ∈ B2 be represented by f
1
, f

2
∈ Z4

2. Then the
function

f1∨̇f2 : (r, s) 7−→ f1(r, s)∨̇f2(r, s)
is represented by

f1∨̇f2 = f
1

+ f
2
. (vector addition in Z4

2)

Proof. By agreement of ∨̇ with +2. For all r, s:

(f1∨̇f2)(r, s) = f1(r, s)∨̇f2(r, s) = f1(r, s) +2 f2(r, s).

2

Corollary 1.1.9 The boolean functions f ∈ B2 that are generated from
r, s, ∨̇ all satisfy

f ∈ C+ = S(E+) =
{
f : f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1) = 0

}
.

Here E+ : x1 + x2 + x3 + x4 = 0 is the same homogeneous linear equation
considered for the parity check bit above.

Conjunction r ∧ s, for instance, cannot be generated from r, s, ∨̇.

6This set of functions is therefore said to be expressively complete; so are for instance
also r, s with negation and conjunction.
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Proof. We show that all functions that can be generated from r, s, ∨̇
satisfy the condition by showing the following:

(i) the basic functions r and s satisfy the condition;

(ii) if some functions f1 and f2 satisfy the condition then so does f1∨̇f2.
This implies that no functions generated from r, s, ∨̇ can break the condition
– what we want to show. 7

Check (i): r = (0, 0, 1, 1) ∈ C+; s = (0, 1, 0, 1) ∈ C+.
(ii) follows from Lemma 1.1.8 as C+ is closed under +4

2, being the solution
set of a homogeneous linear equation (compare Exercise 1.1.7).

For the assertion about conjunction, observe that ∧ = (0, 0, 0, 1) 6∈ C+.
2

Exercise 1.1.8 Show that the functions generated by r, s, ∨̇ do not even
cover all of C+ but only a smaller subspace of Z4

2. Find a second linear
equation over Z4

2 that together with E+ precisely characterises those f which
are generated from r, s, ∨̇.

Exercise 1.1.9 The subset of B2 generated from r, s, 0, 1, ∨̇,¬ (allowing the
constant functions and negation as well) is still strictly contained in B2;
conjunction is still not expressible. In fact the set of functions thus generated
precisely corresponds to the subspace associated with C+ ⊆ Z4

2.

1.2 Basics, Notation and Conventions

Note: This section is intended as a glossary of terms and basic concepts to
turn to as they arise in context; and not so much to be read in one go.

1.2.1 Sets

Sets [Mengen] are unstructured collections of objects (the elements [Ele-
mente] of the set) without repetitions. In the simplest case a set is denoted
by an enumeration of its elements, inside set brackets. For instance, {0, 1}
denotes the set whose only two elements are 0 and 1.

7This is a proof by a variant of the principle of proof by induction which works not
just over N. Compare section 1.2.6.
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Some important standards sets:

N = {0, 1, 2, 3, . . .} the set of natural numbers 8 [natürliche Zahlen]

Z the set of integers [ganze Zahlen]

Q the set of rationals [rationale Zahlen]

R the set of reals [relle Zahlen]

C the set of complex numbers [komplexe Zahlen]

Membership, set inclusion, set equality, power set

For a set A: a ∈ A (a is an element of A). a 6∈ A is an abbreviation for “not
a ∈ A”, just as a 6= b is shorthand for “not a = b”.
∅ denotes the empty set [leere Menge], so that a 6∈ ∅ for any a.
B ⊆ A (B is a subset [Teilmenge] of A) if for all a ∈ B we have a ∈ A. For

instance, ∅ ⊆ {0, 1} ⊆ N ⊆ Z ⊆ Q ⊆ R ⊆ C. The power set [Potenzmenge]
of a set A is the set of all subsets of A, denoted P(A).

Two sets are equal, A1 = A2, if and only if they have precisely the same
elements (for all a: a ∈ A1 if and only if a ∈ A2). This is known as the
principle of extensionality [Extensionalität].

It is often useful to test for equality via: A1 = A2 if and only if both
A1 ⊆ A2 and A2 ⊆ A1.

The strict subset relation A ( B says that A ⊆ B and A 6= B, equiva-
lently: A ⊆ B and not B ⊆ A. (9)

Set operations: intersection, union, difference, and products

The following are the most common (boolean) operations on sets.
Intersection [Durchschnitt] of sets, A1 ∩A2. The elements of A1 ∩A2 are

precisely those that are elements of both A1 and A2.
Union [Vereinigung] of sets , A1∪A2. The elements of A1∪A2 are precisely

those that are elements of at least one of A1 or A2.
Set difference [Differenz], A1 \ A2, is defined to consist of precisely those

a ∈ A1 that are not elements of A2.

8Note that we regard 0 as a natural number; there is a competing convention according
to which it is not. It does not really matter but one has to be aware of the convention
that is in effect.

9The subset symbol without the horizontal line below is often used in place of our ⊆,
but occasionally also to denote the strict subset relation. We here try to avoid it.
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Cartesian products and tuples

Cartesian products provide sets of tuples. The simplest case of tuples is that
of (ordered) pairs [(geordnete) Paare]. (a, b) is the ordered pair whose first
component is a and whose second component is b. Two ordered pairs are
equal iff they agree in both components:

(a, b) = (a′, b′) iff a = a′ and b = b′.

One similarly defines n-tuples [n-Tupel] (a1, . . . , an) with n components
for any n > 2. For some small n these have special names, namely pairs
(n = 2), triples (n = 3), etc.

The cartesian product [Kreuzprodukt] of two sets, A1 × A2, is the set of
all ordered pairs (a1, a2) with a1 ∈ A1 and a2 ∈ A2.

Multiple cartesian products A1×A2×· · ·×An are similarly defined. The
elements of A1 × A2 × · · · × An are the n-tuples whose i-th components are
elements of Ai, for i = 1, . . . , n.

In the special case that the cartesian product is built from the same set
A for all its components, one writes An for the set of n-tuples over A instead
of A× A× · · · × A︸ ︷︷ ︸

n times

.

Defined subsets New sets are often defined as subsets of given sets. If p
states a property that elements a ∈ A may or may not have, then B = {a ∈
A : p(a)} denotes the subset of A that consists of precisely those elements of
A that do have property p. For instance, {n ∈ N : 2 divides n} is the set of
even natural numbers, or {(x, y) ∈ R2 : ax+ by = c} is the solution set of the
linear equation E : ax+ by = c.

1.2.2 Functions

Functions [Funktionen] (or maps [Abbildungen]) are the next most funda-
mental objects of mathematics after sets. Intuitively a function maps ele-
ments of one set (the domain [Definitionsbereich] of the function) to elements
of another set (the range [Wertebereich] of the function). A function f thus
prescribes for every element a of its domain precisely one element f(a) in the
range. The full specification of a function f therefore has three parts:

(i) the domain, a set A = dom(f),

(ii) the range, a set B = range(f),
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(iii) the association of precisely one f(a) ∈ B with every a ∈ A.

Standard notation is as in

f : A −→ B
a 7−→ f(a)

where the first line specifies sets A and B as domain and range, respectively,
and the second line specifies the mapping prescription for all a ∈ A. For
instance, f(a) may be given as an arithmetical term. Any other description
that uniquely determines an element f(a) ∈ B for every a ∈ A is admissible.

wvutpqrsA �~}|xyz{B
•

••

•a

a′

f(a)

f(a′)

//

..]]]]]]]]]]]]]]]]]]]

f(a) is the image of a under f [Bild];
a is a pre-image of b = f(a) [Urbild].

Examples

idA : A −→ A identity function on A
a 7−→ a

succ : N −→ N successor function on N
n 7−→ n+ 1

+: N× N −→ N natural number addition (10)
(n,m) 7−→ n+m

prime: N −→ {0, 1} characteristic function
of the set of primes

n 7−→
{

1 if n is prime
0 else

f(a1,...,an) : Rn −→ R a linear function
(x1, . . . , xn) 7−→ a1x1 + · · ·+ anxn
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With a function f : A→ B we associate its image set [Bildmenge]

image(f) =
{
f(a) : a ∈ A

}
⊆ B,

consisting of all the images of elements of A under f .

The actual association between a ∈ dom(f) and f(a) ∈ range(f) pre-
scribed in f is often best visualised in term of the set of all pre-image/image
pairs, called the graph [Graph] of f :

Gf =
{

(a, f(a)) : a ∈ A
}
⊆ A×B.

Exercise 1.2.1 Which properties must a subset G ⊆ A × B have in order
to be the graph of some function f : A→ B?

x

f(x) (x, f(x))•

//

OO

Surjections, injections, bijections

Definition 1.2.1 A function f : A→ B is said to be

(i) surjective (onto) if image(f) = B,

(ii) injective (one-to-one) if for all a, a′ ∈ A: f(a) = f(a′)⇒ a = a′,

(iii) bijective if it is injective and surjective.

Correspondingly, the function f is called a surjection [Surjektion], an
injection [Injektion], or a bijection [Bijektion], respectively.

Exercise 1.2.2 Classify the above example functions in these terms.

10Functions that are treated as binary operations like +, are sometimes more naturally
written with the function symbol between the arguments, as in n+m rather than +(n,m),
but the difference is purely cosmetic.
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Note that injectivity of f means that every b ∈ range(f) has at most one
pre-image; surjectivity says that it has at least one, and bijectivity says that
it has precisely one pre-image.

Bijective functions f : A→ B play a special role as they precisely trans-
late one set into another at the element level. In particular, the existence
of a bijection f : A → B means that A and B have the same size. [This is
the basis of the set theoretic notion of cardinality of sets, applicable also for
infinite sets.]

If f : A→ B is bijective, then the following is a well-defined function

f−1 : B −→ A
b 7−→ the a ∈ A with f(a) = b.

f−1 is called the inverse function of f [Umkehrfunktion].

Composition

If f : A→ B and g : B → C are functions, we may define their composition

g ◦ f : A −→ C
a 7−→ g(f(a))

We read “g ◦ f” as “g after f”.
Note that in the case of the inverse f−1 of a bijection f : A→ B, we have

f−1 ◦ f = idA and f ◦ f−1 = idB.

Exercise 1.2.3 Find examples of functions f : A→ B that have no inverse
(because they are not bijective) but admit some g : B → A such that either
g ◦ f = idA or f ◦ g = idB.

How are these conditions related to injectivity/surjectivity of f?

Permutations

A permutation [Permutation] is a bijective function of the form f : A → A.
Their action on the set A may be viewed as a re-shuffling of the elements,
hence the name permutation. Because they are bijective (and hence invert-
ible) and lead from A back into A they have particularly nice composition
properties.
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In fact the set of all permutations of a fixed set A, together with the
composition operation ◦ forms a group, which means that it satisfies the
laws (G1-3) collected below (compare (V1-3) above and section 1.3.2).

For a set A, let Sym(A) be the set of permutations of A

Sym(A) =
{
f : f a bijection from A to A

}
,

equipped with the composition operation

◦ : Sym(A)× Sym(A) −→ Sym(A)
(f1, f2) 7−→ f1 ◦ f2.

Exercise 1.2.4 Check that (Sym(A), ◦, idA) satisfies the following laws:

G1 (associativity)
For all f, g, h ∈ Sym(A):

f ◦
(
g ◦ h

)
=
(
f ◦ g

)
◦ h.

G2 (neutral element)
idA is a neutral element w.r.t. ◦, i.e., for all f ∈ Sym(A):

f ◦ idA = idA ◦ f = f.

G3 (inverse elements)
For every f ∈ Sym(A) there is an f ′ ∈ Sym(A) such that

f ◦ f ′ = f ′ ◦ f = idA.

Give an example to show that ◦ is not commutative.

Definition 1.2.2 For n > 1, Sn := (Sym({1, . . . , n}), ◦, id{1,...,n}), the group
of all permutations of an n element set, with composition, is called the sym-
metric group [symmetrische Gruppe] of n elements.

Common notation for f ∈ Sn is f =
( 1
f(1)

2
f(2)

· · · n
f(n)

)
.

Exercise 1.2.5 What is the size of Sn, i.e., how many different permutations
does a set of n elements have?
List all the elements of S3 and compile the table of the operation ◦ over S3.
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1.2.3 Relations

An r-ary relation [Relation] R over a set A is a collection of r-tuples (a1, . . . , ar)
over A, i.e., a subset R ⊆ Ar. For binary relations R ⊆ A2 one often uses
notation aRa′ instead of (a, a′) ∈ R.

For instance, the natural order relation < is a binary relation over N
consisting of all pairs (n,m) with n < m.

The graph of a function f : A→ A is a binary relation.
One may similarly consider relations across different sets, as in R ⊆ A×B;

for instance the graph of a function f : A→ B is a relation in this sense.

Equivalence relations

These are a particularly important class of binary relations. A binary relation
R ⊆ A2 is an equivalence relation [Äquivalenzrelation] over A iff it is

(i) reflexive [reflexiv]; for all a ∈ A, (a, a) ∈ R.

(ii) symmetric [symmetrisch]; for all a, b ∈ A: (a, b) ∈ R iff (b, a) ∈ R.

(iii) transitive [transitiv]; for all a, b, c ∈ A: if (a, b) ∈ R and (b, c) ∈ R,
then (a, c) ∈ R.

Examples: equality (over any set); having the same parity (odd or even)
over Z; being divisible by exactly the same primes, over N.

Non-examples: 6 on N; having absolute difference less than 5 over N.

Exercise 1.2.6 Let f : A→ B be a function. Show that the following is an
equivalence relation:

Rf :=
{

(a, a′) ∈ A2 : f(a) = f(a′)
}
.

Exercise 1.2.7 Consider the following relationship between arbitrary sets
A, B: A ∼ B if there exists some bijection f : A → B. Show that this
relationship has the properties of an equivalence relation: ∼ is reflexive,
symmetric and transitive.

Any equivalence relation over a set A partitions A into equivalence classes .
Let R be an equivalence relation over A. The R-equivalence class of a ∈ A
is the subset

[a]R =
{
a′ : (a, a′) ∈ R

}
.
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Exercise 1.2.8 Show that for any two equivalence classes [a]R and [a′]R,
either [a]R = [a′]R or [a]R ∩ [a′]R = ∅, and that A is the disjoint union of its
equivalence classes w.r.t. R.

The set of equivalence classes is called the quotient of the underlying set
A w.r.t. the equivalence relation R, denoted A/R:

A/R =
{

[a]R : a ∈ A
}
.

The function πR : A→ A/R that maps each element a ∈ A to its equiva-
lence class [a]R ∈ A/R is called the natural projection. Note that (a, a′) ∈ R
iff [a]R = [a′]R iff πR(a) = πR(a′). Compare the diagram for an example of an
equivalence relation with 3 classes that are represented, e.g., by the pairwise
inequivalent elements a, b, c ∈ A:

A

A/R

a
b c

•
[a]R

•
[b]R

•
[c]R

�
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�
�
�

�
�
�
�
�
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For the following also compare section 1.3.2.

Exercise 1.2.9 Consider the equivalence relation ≡n on Z defined as

a ≡n b iff a = kn+ b for some k ∈ Z.

Integers a and b are equivalent in this sense if their difference is divisible by
n, or if they leave the same remainder w.r.t. division by n.

Check that ≡n is an equivalence relation over Z, and that every equiva-
lence class has a unique member in Zn = {0, . . . , n− 1}.

Show that addition and multiplication in Z operate class-wise, in the
sense that for all a ≡n a′ and b ≡n b′ we also have a + b ≡n a′ + b′ and
ab ≡n a′b′.
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1.2.4 Summations

As we deal with (vector and scalar) sums a lot, it is useful to adopt the usual
concise summation notation. We write for instance

n∑
i=1

aixi for a1x1 + · · ·+ anxn.

Relaxed variants of the general form
∑

i∈I ai where I is some index set
that indexes a family (ai)i∈I of terms to be summed up are useful. (In our
usage of such notation, I has to be finite or at least only finitely many ai 6= 0.)
This convention implicitly appeals to associativity and commutativity of the
underlying addition operation (why?).

Similar conventions apply to other associative and commutative opera-
tions, in particular set union and intersection (and here finiteness of the index
set is not essential). For instance

⋃
i∈I Ai stands for the union of all the sets

Ai for i ∈ I.

1.2.5 Propositional logic

We here think of propositions as assertions [Aussagen] about mathematical
objects, and are mostly interested in (determining) their truth or falsity.

Typically propositions are structured, and composed from simpler propo-
sitions according to certain logical composition operators. Propositional logic
[Aussagenlogik], and the standardised use of the propositional connectives
comprising negation, conjunction and disjunction, plays an important role in
mathematical arguments.

If A is an assertion then ¬A (not A [nicht A]) stands for the negation
[Negation] of A and is true exactly when A itself is false and vice versa.

For assertions A and B, A ∧ B (A and B [A und B]) stands for their
conjuction [Konjunktion], which is true precisely when both A and B are
true.

A ∨ B (A or B [A oder B]) stands for their disjunction [Disjunktion],
which is true precisely when at least one of A and B is true.

The standardised semantics of these basic logical operators, and other
derived ones, can be described in terms of truth tables. Using the boolean
values 0 and 1 as truth values, 0 for false and 1 for true, the truth table for a
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logical operator specifies the truth value of the resulting proposition in terms
of the truth values for the component propositions. 11

A B ¬A A ∧B A ∨B A⇒ B A⇔ B

0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

The implication [Implikation] A ⇒ B (A implies B [A impliziert B] is
true unless A (the premise or assumption) is true and B (the conclusion) is
false. The truth table therefore is the same as for ¬A ∨B.

The equivalence or bi-implication [Äquivalenz], A⇔ B (A is equivalent
[äquivalent] with B, A if and and only if B [A genau dann wenn B]), is true
precisely if A and B have the same truth value.

It is common usage to write and read a bi-implication as A iff B, where
“iff” abbreviates “if and only if” [gdw: genau dann wenn].

We do not give any formal account of quantification, and only treat the
symbolic quantifiers ∀ and ∃ as occasional shorthand notation for “for all”
and “there exists”, as in ∀x, y ∈ R (x+ y = y + x).

1.2.6 Some common proof patterns

Implications It is important to keep in mind that an implication A⇒ B
is proved if we establish that B must hold whenever A is true (think of A as
the assumption, of B as the conclusion claimed under this assumption). No
claim at all is made about settings in which (the assumption) A fails!

To prove an implication A ⇒ B, one can either assume A and establish
B, or equivalently assume ¬B (the negation of B) and work towards ¬A; the
justification of the latter lies in the fact that A ⇒ B is logically equivalent
with its contraposition [Kontraposition] ¬B ⇒ ¬A (check the truth tables.)

11Note that these precise formal conventions capture some aspects of the natural every-
day usage of “and” and “or”, or “if . . . , then . . . ”, but not all. In particular, the truth
or falsehood of a natural language composition may depend not just on the truth values
of the component assertions but also on context. The standardised interpretation may
therefore differ from your intuitive understanding at least in certain contexts.
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Implications often occur as chains of the form

A⇒ A1, A1 ⇒ A2, A2 ⇒ A3, . . . , An ⇒ B,

or A ⇒ A1 ⇒ A2 ⇒ . . . ⇒ B for short. The validity of (each step in) the
chain then also implies the validity of A⇒ B. Indeed, one often constructs
a chain of intermediate steps in the course of a proof of A⇒ B.

Indirect proof In order to prove A, it is sometimes easier to work indi-
rectly, by showing that ¬A leads to a contradiction. Then, as ¬A is seen to
be an impossibility, A must be true.

Bi-implications or equivalences To establish an equivalence A⇔ B one
often shows separately A ⇒ B and B ⇒ A. Chains of equivalences of the
form

A⇔ A1, A1 ⇔ A2, A2 ⇔ . . .⇔ B,

or A ⇔ A1 ⇔ A2 ⇔ . . . ⇔ B for short, may allow us to establish A ⇔ B
through intermediate steps. Another useful trick for establishing an equiva-
lence between several assertions, say A, B and C for instance, is to prove a
circular chain of one-sided implications, for instance

A⇒ C ⇒ B ⇒ A

that involves all the assertions in some order that facilitates the proof.

Induction [vollständige Induktion] Proofs by induction are most often used
for assertions A(n) parametrised by the natural numbers n ∈ N. In order to
show that A(n) is true for all n ∈ N one establishes

(i) the truth of A(0) (the base case),

(ii) the validity of the implication A(n)⇒ A(n+1) in general, for all n ∈ N
(the induction step).

As any individual natural number m is reached from the first natural
number 0 in finitely many successor steps from n to n+1, A(m) is established
in this way via a chain of implications that takes us from the base case A(0)
to A(m) via a number of applications of the induction step.

That the natural numbers support the principle of induction is axiomati-
cally captured in Peano’s induction axiom; this is the axiomatic counterpart
of the intuitive insight just indicated.
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There are many variations of the technique. In particular, in order to
prove A(n+ 1) one may assume not just A(n) but all the previous instances
A(0), . . . , A(n) without violating the validity of the principle.

But also beyond the domain of natural numbers similar proof principles
can be used, whenever the domain in question can similarly be generated
from some basic instances via some basic construction steps (“inductive data
types”). If A is true of the basic instances, and the truth of A is preserved
in each construction step, then A must be true of all the objects that can be
constructed in this fashion. We saw a simple example of this more general
idea of induction in the proof of Corollary 1.1.9.

1.3 Algebraic Structures

In the most general case, an algebraic structure consist of a set (the domain
of the structure) equipped with some operations, relations and distinguished
elements (constants) over that set. A typical example is (N,+, <, 0) with
domain N, addition operation +, order relation < and constant 0.

1.3.1 Binary operations on a set

A binary operation ∗ on a set A is a function

∗ : A× A −→ A
(a, a′) 7−→ a ∗ a′,

where we write a ∗ a′ rather than ∗(a, a′).
The operation ∗ is associative [assoziativ] iff for all a, b, c ∈ A:

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

For associative operations, we may drop parentheses and write a ∗ b ∗ c
because precedence does not matter.

The operation ∗ is commutative [kommutativ] iff for all a, b ∈ A:

a ∗ b = b ∗ a.

e ∈ A is a neutral element [neutrales Element] w.r.t. ∗ iff for all a ∈ A

a ∗ e = e ∗ a = a. (12)
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Examples of structures with an associative operation with a neutral ele-
ment: (N,+, 0), (N, ·, 1), (Sn, ◦, id); the first two operations are commutative,
composition in Sn is not for n > 3.

Note that a neutral element, if any, is unique (why?).

If ∗ has neutral element e, then the element a′ is called an inverse [inverses
Element] of a w.r.t. ∗ iff

a ∗ a′ = a′ ∗ a = e. (12)

For instance, in (N,+, 0), 0 is the only element that has an inverse, while
in (Z,+, 0), every element has an inverse.

Observation 1.3.1 For an associative operation ∗ with neutral element e:
if a has an inverse w.r.t. ∗, then this inverse is unique.

Proof. Let a′ and a′′ be inverses of a: a ∗ a′ = a′ ∗ a = a ∗ a′′ = a′′ ∗ a = e.
Then a′ = a′ ∗ e = a′ ∗ (a ∗ a′′) = (a′ ∗ a) ∗ a′′ = e ∗ a′′ = a′′.

2

In additive notation one usually writes −a for the inverse of a w.r.t. +,
in multiplicative notation a−1 for the inverse w.r.t. ·.

1.3.2 Groups

An algebraic structure (A, ∗, e) with binary operation ∗ and distinguished
element e is a group [Gruppe] iff the following axioms (G1-3) are satisfied:

G1 (associativity): ∗ is associative.
For all a, b, c ∈ A: a ∗ (b ∗ c) = (a ∗ b) ∗ c.

G2 (neutral element): e is a neutral element w.r.t. ∗.
For all a ∈ A: a ∗ e = e ∗ a = a.

G3 (inverse elements): ∗ has inverses for all a ∈ A.
For every a ∈ A there is an a′ ∈ A: a ∗ a′ = a′ ∗ a = e.

A group with a commutative operation ∗ is called an abelian or commu-
tative group [kommutative oder abelsche Gruppe]. For these we have the
additional axiom

12An element just satisfying a∗e for all a ∈ A is called a right-neutral element; similarly
there are left-neutral elements; a neutral element as defined above is both, left- and right-
neutral. Similarly for left and right inverses.
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G4 (commutativity): ∗ is commutative.
For all a, b ∈ A: a ∗ b = b ∗ a.

Observation 1.3.2 Let (A, ∗, e) be a group. For any a, b, c ∈ A:
a ∗ c = b ∗ c ⇒ a = b.

Proof. Let a ∗ c = b ∗ c and c′ the inverse of c.
Then a = a ∗ e = a ∗ (c ∗ c′) = (a ∗ c) ∗ c′ = (b ∗ c) ∗ c′ = b ∗ (c ∗ c′) = b ∗ e = b.

2

Examples of groups

Familiar examples of abelian groups are the additive groups over the common
number domains (Z,+, 0), (Q,+, 0), (R,+, 0), or the additive group of vector
addition over Rn, (Rn,+,0). Further also the multiplicative groups over
some of the common number domains without 0 (as it has no multiplicative
inverse), as in (Q∗, ·, 1) and (R∗, ·, 1) where Q∗ = Q \ {0} and R∗ = R \ {0}.

As examples of a non-abelian groups we have seen the symmetric groups
Sn (non-abelian for n > 3), see 1.2.2.

Modular arithmetic and Zn

For n > 2 let Zn = {0, . . . , n− 1} consist of the first n natural numbers.
Addition and multiplication of integers over Z induce operations of ad-

dition and multiplication over Zn, which we denote +n and ·n at first, via
passage to remainders w.r.t. division by n. (Also compare Exercise 1.2.9.)
For a, b ∈ Zn put

a+n b := the remainder of a+ b w.r.t. division by n.

a ·n b := the remainder of ab w.r.t. division by n.

As an example we provide the tables for +4 and ·4 over Z4:

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

·4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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Exercise 1.3.1 Check that (Z4,+4, 0) is an abelian group. Why does the
operation ·4 fail to form a group on Z4 or over Z4 \ {0}?

It is a fact from elementary number theory that for a, b ∈ Z the equation

ax+ by = 1

has an integer solution for x and y if (and only if) a and b are relatively prime
(their greatest common divisor is 1). If n is prime, therefore, the equation
ax+ny = 1 has an integer solution for x and y for all a ∈ Zn \{0}. But then
x is an inverse w.r.t. ·n for a, since ax + nk = 1, for any integer k, means
that ax leaves remainder 1 w.r.t. division by n.

It follows that for any prime p, (Zp \ {0}, ·p, 1) is an abelian group.

1.3.3 Rings and fields

Rings [Ringe] and fields [Körper] are structures of the format (A,+, ·, 0, 1)
with two binary operations + and ·, and two distinguished elements 0 and 1.

Rings (A,+, ·, 0, 1) is a ring if (A,+, 0) is an abelian group, · is associative
with neutral element 1 and the following distributivity laws [Distributivge-
setze] are satisfied for all a, b, c ∈ A:

(a+ b) · c = (a · c) + (b · c)
c · (a+ b) = (c · a) + (c · b)

A commutative ring is one with commutative multiplication operation ·.

One often adopts the convention that · takes precedence over + in the
absence of parentheses, so that a · c+ b · c stands for (a · c) + (b · c).

Observation 1.3.3 In any ring (A,+, ·, 0, 1), 0 · a = a · 0 = 0 for all a ∈ A.

Proof. For instance, a+ (0 · a) = 1 · a+ 0 · a = (1 + 0) · a = 1 · a = a.
So a+ (0 · a) = a+ 0, and 0 · a = 0 follows with Observation 1.3.2.

2

Exercise 1.3.2 (Zn,+, ·, 0, 1) is a commutative ring for any n > 2.
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Fields A field [Körper] is a commutative ring (A,+, ·, 0, 1) with 0 6= 1 and
in which all a 6= 0 have inverses w.r.t. multiplication.

Familiar examples are the fields of rational numbers (Q,+, ·, 0, 1), the
field of real numbers (R,+, ·, 0, 1), and the field of complex numbers (see
below).

It follows from our considerations about modular arithmetic, +n and ·n
over Zn, that for any prime number p, (Zp,+p, ·p, 0, 1) is a field, usually
denoted Fp. Compare Exercise 1.1.5 for the case of F2.

The field of complex numbers, C

We only give a very brief summary. As a set

C =
{
a+ bi : a, b ∈ R

}
where i 6∈ R is a “new” number, whose arithmetical role will become clear
when we set i2 = i · i = −1 in complex multiplication.

We regard R ⊆ C via the natural identification of r ∈ R with r+ 0i ∈ C.
Similarly, i is identified with 0 + 1i. The numbers λi for λ ∈ R are called
imaginary numbers [imaginäre Zahlen], and a complex number a+ bi is said
to have real part [Realteil] a and imaginary part [Imaginärteil] b.

The operation of addition over C corresponds to vector addition over R2

if we associate the complex number a+ bi ∈ C with (a, b) ∈ R2:

(a1 + b1i) + (a2 + b2i) := (a1 + a2) + (b1 + b2)i.

Exercise 1.3.3 Check that (C,+, 0) is an abelian group.

The operation of multiplication over C is made to extend multiplication
over R, to satisfy distributivity and to make i2 = −1. This leads to

(a1 + b1i) · (a2 + b2i) := (a1a2 − b1b2) + (a1b2 + a2b1)i.

Exercise 1.3.4 Check that (C,+, ·, 0, 1) is a field.

Over the field of complex numbers, any non-trivial polynomial has a zero
[Fundamentalsatz der Algebra]. While the polynomial equation x2 + 1 = 0
admits no solution over R, C has been extended (in a minimal way) to
provide solutions i and −i; but in adjoining this one extra number i, one in
fact obtains a field over which any non-trivial polynomial equation is solvable
(in technical terms: the field of complex numbers is algebraically closed).
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1.3.4 Aside: isomorphisms of algebraic structures

An isomorphism [Isomorphismus] is a structure preserving bijection between
(algebraic) structures. If there is an isomorphism between two structures,
we say they are isomorphic. Isomorphic structures may be different (for in-
stance have distinct domains) but they cannot be distinguished on structural
grounds, and from a mathematical point of view one might as well ignore the
difference.

For instance, two structures with a binary operation and a distinguished
element (constant), (A, ∗A, eA) and (B, ∗B, eB) are isomorphic if there is an
isomorphism between them, which in this case is a map

ϕ : A −→ B such that
ϕ is bijective
ϕ preserves e: ϕ(eA) = eB

ϕ preserves ∗: ϕ(a ∗A a′) = ϕ(a) ∗B ϕ(a′) for all a, a′ ∈ A

The diagram illustrates the way in which ϕ translates between ∗A and
∗B, where b = ϕ(a), b′ = ϕ(a′):

(a, a′) a ∗A a′

(b, b′) b ∗B b′

∗A //

∗B //

ϕ

��

ϕ

��

ϕ

��

It may be instructive to verify that the existence of an isomorphism be-
tween (A, ∗A, eA) and (B, ∗B, eB) implies, for instance, that (A, ∗A, eA) is a
group if and only if (B, ∗B, eB) is.

Exercise 1.3.5 Consider the additive group (Z4
2,+,0) of vector addition in

Z4
2 and the algebraic structure (B2, ∨̇, 0) where (as in section 1.1.4) B2 is the

set of all f : Z2 ×Z2 → Z2, 0 ∈ B2 is the constant function 0 and ∨̇ operates
on two functions in B2 by combining them with xor. Lemma 1.1.8 essentially
says that our mapping ϕ : f 7−→ f is an isomorphism between (B2, ∨̇, 0) and
(Z4

2,+,0). Fill in the details.

Exercise 1.3.6 Show that the following is an isomorphism between (R2,+,0)
and (C,+, 0):

ϕ : R2 −→ C
(a, b) 7−→ a+ bi.
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Exercise 1.3.7 Show that the symmetric group of two elements (S2, ◦, id)
is isomorphic to (Z2,+, 0).

Exercise 1.3.8 Show that there are two essentially different, namely non-
isomorphic, groups with four elements. One is (Z4,+4, 0) (see section 1.3.2).
So the task is to design a four-by-four table of an operation that satisfies the
group axioms and behaves differently from that of Z4 modular arithmetic so
that they cannot be isomorphic.

Isomorphisms within one and the same structure are called automor-
phisms ; these correspond to permutations of the underlying domain that
preserve the given structure and thus to symmetries of that structure.

Definition 1.3.4 Let (A, . . .) be an algebraic structure with domain A (with
specified operations, relations, constants depending on the format). An au-
tomorphism of (A, . . .) is a permutation of A that, as a map ϕ : A→ A is an
isomorphism between (A, . . .) and (A, . . .).

The set of all automorphisms of a given structure (A, . . .) forms a group,
the automorphism group of that structure, which is a subgroup of the full
permutation group Sym(A).

Exercise 1.3.9 Check that the automorphisms of a fixed structure (A, . . .)
with domain A form a group with composition and the identity idA as the
neutral element.
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Chapter 2

Vector Spaces

Vector spaces are the key notion of linear algebra. Unlike the basic algebraic
structures like groups, rings or fields considered in the last section, vector
spaces are two-sorted, which means that we distinguish two kinds of objects
with different status: vectors and scalars. The vectors are the elements of
the actual vector space V , but on the side we always have a field F as the
domain of scalars. Fixing the field of scalars F, we consider the class of
F-vector spaces – or vector spaces over the field F. So there are R-vector
spaces (real vector spaces), C-vector spaces (complex vector spaces), Fp-
vector spaces, etc. Since there is a large body of common material that can
be covered without specific reference to any particular field, it is most natural
to consider F-vector spaces for an arbitrary field F at first.

2.1 Vector spaces over arbitrary fields

We fix an arbitrary field F. We shall use no properties of F apart from the
general consequences of the field axioms, i.e., properties shared by all fields.
Scalars 0 and 1 refer to the zero and one of the field F. For a scalar λ ∈ F
we write −λ for the inverse w.r.t. addition; and if λ 6= 0, λ−1 for the inverse
w.r.t. multiplication in F.

An F-vector space consists of a non-empty set V of vectors, together with
a binary operation of vector addition

+: V × V −→ V
(v, w) 7−→ v + w,

47
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an operation of scalar multiplication

· : F× V −→ V
(λ, v) 7−→ λ · v or just λv,

and a distinguished element 0 ∈ V called the null vector (not to be confused
with the scalar 0 ∈ F).

2.1.1 The axioms

The axioms themselves are those familiar from section 1.1. Only, we have re-
moved some of the more obvious redundancies from that preliminary version,
in order to get a more economic set of rules that need to be checked.

(V1) for all u,v,w ∈ V : (u + v) + w = u + (v + w)

(V2) for all v ∈ V : v + 0 = v

(V3) for all v ∈ V : v + ((−1) · v) = 0

(V4) for all u,v ∈ V : u + v = v + u

(V5) for all v and all λ, µ ∈ F: λ · (µ · v) = (λµ) · v
(V6) for all v ∈ V : 1 · v = v

(V7) for all v ∈ V and all λ, µ ∈ F: (λ+ µ) · v = λ · v + µ · v
(V8) for all u,v ∈ V and all λ ∈ F: λ · (u + v) = (λ · u) + (λ · v)

Definition 2.1.1 Let F be a field. A non-empty set V together with oper-
ations +: V × V → V and · : F × V → V and distinguished element 0 ∈ V
is an F-vector space [F-Vektorraum] if the above axioms V1-8 are satisfied.

Note that (V1-4) say that (V,+,0) is an abelian group; (V5/6) says that
scalar multiplication is associative with 1 ∈ F acting as a neutral element;
V7/8 assert (two kinds of) distributivity.
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We generally adopt the following conventions when working in an F-vector
space V :

(i) · can be dropped. E.g., λv stands for λ · v.

(ii) parentheses that would govern the order of precedence for multiple +
or · can be dropped (as justified by associativity). E.g., we may write
u + v + w.

(iii) between vector addition and scalar multiplication, scalar multiplication
has the higher precedence. E.g., we write λu + µv for (λu) + (µv).

(iv) we write v −w for v + (−1)w, and −v for (−1)v.

Exercise 2.1.1 Show that, in the presence of the other axioms, (V3) is
equivalent to: for all v ∈ V there is some w ∈ V such that v + w = 0.

The following collects some important derived rules, which are direct
consequences of the axioms.

Lemma 2.1.2 Let V be an F-vector space. Then, for all u,v,w ∈ V and
all λ ∈ F:

(i) u + v = u + w ⇒ v = w.

(ii) 0v = 0.

(iii) λ0 = 0.

(iv) λv = 0 ⇒ v = 0 or λ = 0.

Proof. Ad (i): add −u on both sides of the first equation.
Ad (ii): 0v = (1− 1)v = v + (−1)v = 0. Note that the second equality

uses (V7) and (V6).
Ad (iii): for any u ∈ V : λ0 = λ(u + (−1)u) = λu + (−λu) = λu +

(−1)λu = 0. This uses (V3), (V8), (V5) and (V3) again.
Ad (iv): suppose λv = 0 and λ 6= 0. Then λ−1λv = v = λ−10 = 0,

where the last equality uses (iii) for λ−1.
2

Isomorphisms of F-vector spaces

As for algebraic structures, the notion of isomorphism of F-vector spaces is
to capture the situation where V and W are structurally the same, as vector
spaces over the same field F.



50 Linear Algebra I — Martin Otto 2013

Definition 2.1.3 Consider two F-vector spaces V and W . We say that a
map ϕ : V → W is a vector space isomorphism between V and W iff

(i) ϕ : V → W is a bijection.

(ii) for all u,v ∈ V : ϕ(u + v) = ϕ(u) + ϕ(v).

(iii) for all λ ∈ F, v ∈ V : ϕ(λv) = λϕ(v).

Two F-vector spaces are isomorphic iff there is an isomorphism between
them.

In the above condition on an isomorphism, (ii) is compatibility with ad-
dition, (iii) compatibility with scalar multiplication. Check that these also
imply compatibility with the null vectors, namely that ϕ(0V ) = 0W .

2.1.2 Examples old and new

Example 2.1.4 For n ∈ N, let Fn be the set of n-tuples over F with
component-wise addition

((a1, . . . , an), (b1, . . . , bn)) 7−→ (a1 + b1, . . . , an + bn)

and scalar multiplication with λ ∈ F according to

(λ, (a1, . . . , an)) 7−→ (λa1, . . . , λan)

and 0 = (0, . . . , 0) ∈ Fn. This turns Fn into an F-vector space. [The standard
n-dimensional vector space over Fn.]

We include the (degenerate) case of n = 0. The standard interpretation
of A0 is (irrespective of what A is) that A0 = {2} has the empty tuple 2

as its only element. Letting λ2 = 2 and declaring 2 + 2 = 2 we find that
V = F0 becomes a vector space whose only element 2 is also its null vector.

We saw the concrete examples of Rn and Zn2 above.
With Znp for arbitrary prime p we get more examples of vector spaces over

finite fields. Can you determine the size of Znp? Since these are finite spaces
their analysis is of a more combinatorial character than that of Rn or Cn.

Example 2.1.5 Let A be a non-empty set, and let F(A,F) be the set of all
functions f : A→ F. We declare vector addition on F(A,F) by

f1 + f2 := f where f : A → F
a 7−→ f1(a) + f2(a)
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and scalar multiplication with λ ∈ F by

λf := g where g : A → F
a 7−→ λf(a).

This turns F(A,F) into an F-vector space. Its null vector is the constant
function with value 0 ∈ F for every a ∈ A.

This vector addition and scalar multiplication over F(A,F) is referred to
as point-wise [punktweise] addition or multiplication.

Remark 2.1.6 Example 2.1.5 actually generalises Example 2.1.4 in the fol-
lowing sense. We may identify the set of n-tuples over F with the set of
functions F({1, . . . , n},F) via the association

(a1, . . . , an) �

{
f : {1, . . . , n} −→ F

i 7−→ ai.

This yields a bijection between Fn and F({1, . . . , n},F) that is a vector
space isomorphism (compatible with the vector space operations, see Def-
inition 2.1.3).

Two familiar concrete examples of spaces of the form F(A,R) are the
following:

• F(N,R), the R-vector space of all real-valued sequences, where we iden-
tify a sequence (ai)i∈N = (a0, a1, a2, . . .) with the function f : N → R
that maps i ∈ N to ai.

• F(R,R), the R-vector space of all functions from R to R.

There are many other natural examples of vector spaces of functions, as
for instance the following ones over R:

• Pol(R), the R-vector space of all polynomial functions over R, i.e., of
all functions

f : R → R
x 7−→ anx

n + an−1x
n−1 + . . .+ a1x+ a0 =

∑
i=0,...,n aix

i

for suitable n ∈ N and coefficients ai ∈ R.
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• Poln(R), the R-vector space of all polynomial functions over R of degree
at most n, for some fixed n. So Poln(R) consists of all functions f : x 7→∑

0=1,...,n aix
i for any choice of coefficients a0, a1, . . . , an in R.

Exercise 2.1.2 Define vector addition and scalar multiplication in Pol(R)
and Poln(R) in accordance with the stipulations in F(A,R). Check the vector
space axioms.

Concentrating on the coefficients in the polynomials, can you pin down
a natural correspondence between Rn+1 and Poln(R) that is a vector space
isomorphism (Definition 2.1.3)?

Exercise 2.1.3 Define the space Pol(Fp) of polynomial functions over Fp.
A polynomial function is given by an arithmetical expression

∑
i=0,...,n aix

i

with coefficients ai ∈ Fp, and viewed as a function in F(Fp,Fp). Verify that
we obtain an Fp-vector space. What is the size of this space in the case
of F2? Note that two distinct polynomials may define the same polynomial
function!

Example 2.1.7 Let F(m,n) be the set of all m× n matrices [Matrizen] with
entries from F. We write A = (aij)16i6m;16j6n for a matrix with m rows and n
columns with entry aij ∈ F in row i and column j. On F(m,n) we again declare
addition and scalar multiplication in the natural component-wise fashion:

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn

 :=


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
am1 + bm1 am2 + bm2 · · · amn + bmn


and

λ


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 :=


λa11 λa12 · · · λa1n
λa21 λa22 · · · λa2n

...
...

...
λam1 λam2 · · · λamn

 .
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Let 0 ∈ F(m,n) be the matrix with entries aij = 0 throughout. Then
F(m,n) is an F-vector space. Which standard vector space over F is this space
isomorphic to?

2.2 Subspaces

A (linear) subspace U ⊆ V of an F-vector space V is a subset U that is itself
an F-vector space w.r.t. the induced linear structure, i.e., w.r.t. the addition
and scalar multiplication inherited from V .

We have seen several examples of this subspace relationship above:

• the solution set S(E∗) ⊆ Rn of any homogeneous system of equations
E∗ over Rn forms a subspace; see Observation 1.1.1; this observation
generalises to any n and any other field F.

• the relationship between the R-vector spaces Poln(R) ⊆ Pol(R) and
Pol(R) ⊆ F(R,R).

Note, however, that the solution set S(E) of a not necessarily homoge-
neous system of equations usually is not a subspace, as vector addition and
scalar multiplication do not operate in restriction to this subset. (We shall
return to this in section 2.2.2 below.)

2.2.1 Linear subspaces

Definition 2.2.1 Let V be an F-vector space. A non-empty subset U ⊆ V
is a (linear) subspace [Untervektorraum] iff vector addition + and scalar
multiplication · of V restrict to the subset U in such a way that U with these
induced operations is an F-vector space.

That + and · restrict to operations of the required format on U ⊆ V
means that

(i) for all u1,u2 ∈ U : u1 + u2 ∈ U .

(ii) for all u ∈ U and all λ ∈ F: λu ∈ U .

These are referred to as closure conditions on U . And in fact, closure is
all that is needed, as stated in the following.
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Proposition 2.2.2 Let ∅ 6= U ⊆ V where V is an F-vector space. Then U
is a subspace of V iff for all u1,u2 ∈ U and all λ1, λ2 ∈ F:

λ1u1 + λ2u2 ∈ U.

Proof. It is clear that this closure condition is necessary for U to be a sub-
space, as it needs to be closed under both addition and scalar multiplication
by definition.

Conversely, assume that ∅ 6= U ⊆ V and that the above closure condition
is satisfied.

We firstly see that vector addition and scalar multiplication of V do re-
strict to U , in the sense that for u,u1,u2 ∈ U and λ ∈ F:

u1 + u2 ∈ U (put λ1 = λ2 = 1)
λu ∈ U (put u1 = u2 = u and λ1 = λ, λ2 = 0).

Of the axioms (V1-8) that we need to verify in restriction to U , all but
(V2) are trivial: any identity between terms that holds for all choices of
vectors in V must in particular hold of all choices of vectors from U ⊆ V .

(V2) is different because it (implicitly) requires 0 to be in U ; but this
is no problem as our closure condition shows that u + (−1)u = 0 ∈ U (for
u1 = u2 = u and λ1 = 1, λ2 = −1), as long as we have any u ∈ U to apply
this to – and we do, as U 6= ∅ by assumption.

2

Exercise 2.2.1 Show that the closure condition expressed in the proposition
is equivalent with the following, extended form, which is sometimes more
handy in subspace testing:

(i) 0 ∈ U .

(ii) for all u1,u2 ∈ U : u1 + u2 ∈ U .

(iii) for all u ∈ U and all λ ∈ F: λu ∈ U .

Exercise 2.2.2 Verify that the following are subspace relationships:

(i) {(b1, . . . , bm, 0, . . . , 0) ∈ Fn : (b1, . . . , bm) ∈ Fm} ⊆ Fn. [For any m 6 n.]

(ii) S(E∗) ⊆ Fn where E∗ : a1x1 + . . . + anxn = 0 is a homogeneous linear
equation over Fn with coefficients ai ∈ F.

(iii) Poln(R) ⊆ Pol(R).

(iv) Pol(R) ⊆ F(R,R).
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Exercise 2.2.3 Check that the following are not subspace relationships:

(i) S(E) ⊆ Fn where E : a1xi + . . .+ anxn = 1 is an inhomogeneous linear
equation over Fn with coefficients ai ∈ F.

(ii) {f ∈ Pol(R) : f(0) 6 17} ⊆ Pol(R).

(iii) {f : f a bijection from R to R} ⊆ F(R,R).

(iv) F(N,Z) ⊆ F(N,R).

Proposition 2.2.3 Any intersection of subspaces is a subspace. Let V be
an F-vector space, Ui ⊆ V subspaces for all i ∈ I. Then

⋂
i∈I Ui ⊆ V is also

a subspace.

Proof. We use the criterion of Proposition 2.2.2 to show that U :=
⋂
i∈I Ui

is a subspace of V .
Note first that U 6= ∅ as 0 ∈ Ui for all i (Ui is a subspace); so 0 ∈ U .
Let u1,u2 ∈ U , λ1, λ2 ∈ F. We need to show that λ1u1 + λ2u2 ∈ U .
u1 ∈ U implies that u1 ∈ Ui for each i ∈ I, similarly for u2. Therefore, as

Ui is a subspace, λ1u1 + λ2u2 ∈ Ui. As this holds for every individual i ∈ I,
we have that λ1u1 + λ2u2 ∈

⋂
i∈I Ui = U , as required.

2

This closure under intersection implies for instance that the solution set
of any system of homogeneous linear equations is a subspace, just on the
basis that the solution set of every single homogeneous linear equation is.
And this applies even for infinite systems, like the following.

Example 2.2.4 Consider the R-vector space F(N,R) of all real-valued se-
quences. We write (aj)j∈N for a typical member. Let, for i ∈ N, Ei be the
following homogeneous linear equation

Ei : ai + ai+1 − ai+2 = 0.

It is easily verified that S(Ei) = {(aj)j∈N : ai+ai+1 = ai+2} forms a subspace
of F(N,R). The intersection of all these subspaces,

⋂
i∈N S(Ei), contains

precisely those sequences (aj)j∈N for which

aj+2 = aj + aj+1 for all j ∈ N,

the Fibonacci sequences. [Of course one could also verify directly that the
set of Fibonacci sequences forms a subspace of F(N,R).]
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2.2.2 Affine subspaces

We briefly consider subsets that are not linear subspaces but not far from
such, like the solution sets S(E) to inhomogeneous (systems of) linear equa-
tions.

Recall that, for instance, in R2 a single linear equation can have the
following types of solution sets:

(i) ∅; this is of no further interest.

(ii) R2; the entire plane, which (although degenerate) is a linear subspace.

(iii) a line in R2, which may or may not contain 0; if it does, it is a linear
subspace; if it does not, it fails to be closed under vector addition or
scalar multiplication. However, it is still a simple translate of a linear
subspace, as we saw in Lemma 1.1.3 (b).

Definition 2.2.5 S ⊆ V is an affine subspace [affiner Unterraum] of the
vector space V if S is of the form

S = {v + u : u ∈ U}

for some linear subspace U ⊆ V and some v ∈ V .

For convenience we introduce the notation v + U for

v + U := {v + u : u ∈ U}.

0

U

S = v + U

•
v

;;wwwwwwwwwwww

O O O O O O O O O O O

OOOOOOOOOOOOOOOOOOOOOOOOOO

Exercise 2.2.4 Show that if S = v0 + U ⊆ V is an affine subspace, then
S = v + U for every v ∈ S, and that the linear subspace U ⊆ V is uniquely
determined by S.

Exercise 2.2.5 Let S ⊆ V be an affine subspace. Show that S is a linear
subspace iff 0 ∈ S.



LA I — Martin Otto 2013 57

Exactly along the lines of section 1.1.3 we find for instance the following
for solution sets of systems of linear equations – and here the role of U is
played by the solution set of the associated homogeneous system.

Exercise 2.2.6 Let E be a system of linear equations

Ej :
∑

i=1,...,n

ajixi = bj for j = 1, . . . ,m,

over Fn, with coefficients aji, bj ∈ F. Let E∗ be the associated homogeneous
system with all bj replaced by 0.

(a) Show that S(E∗) is a linear subspace of Fn, and that, if v ∈ S(E) is
any solution of E, then S(E) = v + S(E∗) is an affine subspace of Fn.

(b) Verify that the Gauß-Jordan elimination procedure works in this gen-
eral case exactly as it does over R.

(c) Show that S(E∗) has non-trivial solutions u 6= 0 for all systems E with
more variables (columns on the left-hand side) than equations (rows),
i.e., when m < n. [Hint: in this case, not all variables can be pivot.]

Proposition 2.2.6 If E is any system of linear equations over Fn, then its
solution set is either empty or forms an affine subspace.

Exercise 2.2.7 Show that the intersection of (any number of) affine sub-
spaces of a vector space V is either empty or again an affine subspace. [Use
Proposition 2.2.3 and Exercise 2.2.4.]

Exercise 2.2.8 Consider Z3
2 as an F2-vector space. How many different

linear and affine subspaces, respectively, does this space have?

Exercise 2.2.9 In the game “SET”, there are 81 cards which differ accord-
ing to 4 properties for each of which there are 3 distinct states (3 colours:
red, green, blue; 3 shapes: round, angular, wavy; 3 numbers: 1, 2, 3; and 3
faces: thin, medium, thick). A “SET”, in terms of the rules of the game, is
any set of 3 cards such that for each one of the four properties, either all 3
states of that property are represented or all 3 cards in the set have the same
state. For instance,

(red, round,1,medium),
(red, angular,2, thin),
(red,wavy,3, thick)
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form a “SET”, while the following do not:

(red, round,1,medium),
(blue, angular,2, thin),
(green,wavy,1, thick).

Modelling the set of all cards as Z4
3, verify that the game’s notion of

“SET” corresponds to affine subspaces of three elements (the lines in Z4
3).

Show that any two different cards uniquely determine a third one with
which they form a “SET”.
[Extra: what is the largest number of cards that can fail to contain a “SET”?]

Exercise 2.2.10 Consider the following subspace of the R-vector space of
all real-valued sequences, F(N,R), defined in terms of a parameter a ∈ R:

Sa :=
{

(ai)i∈N : limi→∞ai = a
}
.

Show that for any a, Sa is an affine subspace of F(N,R).
For which a is it even a linear subspace?

2.3 Aside: affine and linear spaces

There is also a natural notion of affine spaces. These are point spaces with
a linear structure embodied in an accompanying F-vector space.

Definition 2.3.1 An affine space [affiner Raum] with associated F-vector
space V consists of a triple (A, V, ρ) where

(i) A is the set of points of the affine space (we write P,Q,R, . . . ∈ A for
points).

(ii) V is an F-vector space.

(iii) ρ describes an action of the group (V,+,0) on A as a group of transla-
tions ,

ρ : V × A −→ A
(v, P ) 7−→ ρ(v, P ) =: P + v,

such that:

(a) for all u,v ∈ V and all P ∈ A: (P + u) + v = P + (u + v)
(ρ is compatible with vector addition in V , a group action).
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(b) for all v ∈ V and all P ∈ A: P + v = P iff v = 0
(no non-trivial fixed points).

(c) for all P,Q ∈ A there is some v ∈ V such that P + v = Q
(all of A covered by translations of any given point).

Note that the vector v whose existence is postulated in (c) is uniquely

determined by P and Q, by (a) and (b). We write
−→
PQ for this unique v such

that P + v = Q.

Any F-vector space V gives rise to an affine space whose point space is
V , and with ρ : V × V → V just being vector addition.

The main reason why one wants to regard affine spaces as entities in their
own right is geometric. The Euclidean plane, for instance, is in fact more
closely modelled as an affine space with associated R-vector space R2 than by
the R-vector space R2 itself. The reason is that the Euclidean plane is entirely
translation invariant as a point space, with no distinguished origin, while any
vector space always has a distinguished element, namely its null vector. And
indeed, there is of course a distinguished translation corresponding to the
null vector, but not a distinguished point.

Of the natural notion of affine subspaces (subspaces of affine spaces) we
have seen above only its slightly deflated version in the form of affine sub-
spaces of vector spaces (which we may regard as affine spaces by the above).
But the point there was exactly the same: to forget about the distinguished
role of the origin or null vector and to obtain a notion that is invariant under
translation.

In the general setting of an affine space (A, V, ρ), a subset A0 ⊆ A is an
affine subspace if it is of the form P + U = {P + u : u ∈ U} for some point
P ∈ A and some linear subspace U ⊆ V . One checks that this implies that
(A0, U, ρ0) is itself an affine space, where ρ0 is the restriction of ρ to U ×A0.

Exercise 2.3.1 Check that the following are equivalent for any subset A0 ⊆
A of an affine space (A, V, ρ):

(i) A0 forms an affine subspace.

(ii) the set {
−→
PQ : P,Q ∈ A0} forms a linear subspace of V .

(iii) for some fixed P ∈ A0, {
−→
PQ : Q ∈ A0} forms a linear subspace of V .

Remark: over fields F, in which 1 + 1 6= 0 (characteristic 6= 2), these are also
equivalent with the condition that for any two distinct points P,Q ∈ A0, the

line through P and Q, {P + λ
−→
PQ : λ ∈ F}, is contained in A0. (How?)
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2.4 Linear dependence and independence

2.4.1 Linear combinations and spans

A linear combination [Linearkombination] of vectors v1, . . . ,vk in an F-vector
space V is any vector of the form

λ1v1 + . . .+ λkvk =
∑

i=1,...,k

λivi

with λi ∈ F for i = 1, . . . , k.

Exercise 2.4.1 Show that (in generalisation of the explicit closure condi-
tion in Proposition 2.2.2) any subspace U ⊆ V is closed under arbitrary
linear combinations: whenever u1, . . . ,uk ∈ U and λ1, . . . , λk ∈ F, then∑

i=1,...,k λiui ∈ U . [Hint: by induction on k > 1].

Definition 2.4.1 Let S ⊆ V be any subset of the F-vector space V . A
linear combination [Linearkombination] over S is a vector of the form∑

i=1,...,k

λivi,

for any k ∈ N and v1, . . . ,vk ∈ S and λ1, . . . , λk ∈ F. (1) The scalars λi are
called the coefficients of the linear combination.

We denote the set of all linear combinations over S by

span(S) :=
{ ∑
i=1,...,k

λivi : v1, . . . ,vk ∈ S, λ1, . . . , λk ∈ F; k ∈ N
}
⊆ V.

Note that 0 ∈ span(S) for any S (even for S = ∅).
The span of S, span(S), is also called the linear hull [lineare Hülle] of S.

Lemma 2.4.2 Let S ⊆ V be any subset of the F-vector space V . Then
span(S) ⊆ V is a subspace. Moreover it is the smallest (in the sense of ⊆)
subspace of V that contains S. As such it can also be characterised as

span(S) =
⋂

U ⊆ V a subspace
with S ⊆ U

U.

1We explicitly want to allow the (degenerate) case of k = 0 and put the null vector
0 ∈ V to be the value of the empty sum!



LA I — Martin Otto 2013 61

Proof. We leave the verification that span(S) is a subspace as an exercise.
Clearly S ⊆ span(S), so span(S) is a subspace containing S. We next

show that span(S) is the smallest such subspace of V by showing that
span(S) ⊆ U for any subspace U ⊆ V that contains S. Let U be some
subspace with S ⊆ U . By closure of U (as a subspace) under linear combi-
nations, we get that any linear combination over S remains inside U , whence
span(S) ⊆ U as claimed.

Finally, span(S) is the intersection of all subspaces U that contain S. We
just saw that span(S) is indeed a subset of every one of those subspaces, hence
it is also contained in their intersection. As span(S) itself is a subspace of V
that contains S, the intersection of all such must in particular be contained
in span(S) – and the claimed equality follows.

2

Exercise 2.4.2 Show that span(S) ⊆ span(S ′) whenever S ⊆ S ′; and that
span(span(S)) = span(S).

Show that in general not span(S) ∩ span(S ′) = span(S ∩ S ′) and not
span(S)∪ span(S ′) = span(S ∪S ′). Which inclusions do hold in these cases?

Definition 2.4.3 If U ⊆ V is a subspace, then S ⊆ U is a spanning set
[Erzeugendensystem] for U iff U = span(S).

In this case one also says that S spans U .

Note that S = ∅ is a spanning set for U = {0}.
For the following compare the row transformations in Gauß-Jordan, sec-

tion 1.1.3.

Lemma 2.4.4 Let S ⊆ V , V an F-vector space. Let S ′ be obtained from S
by one of the following operations

(T2) replacing some u ∈ S by λu for some 0 6= λ ∈ F.

(T3) replacing some u ∈ S by u + λv for some λ ∈ F and u 6= v ∈ S.

Then span(S ′) = span(S).

Proof. We do the case for (T3). Let v 6= u, u,v ∈ S, λ ∈ F. Let
u′ := u + λv and put S ′ := (S \ {u}) ∪ {u′}.

We firstly show that span(S ′) ⊆ span(S). Let w ∈ span(S ′): w =
w0+µu′ where w0 ∈ span(S\{u}). Therefore w = w0+µ(u+λv) ∈ span(S).

The opposite inclusion is shown similarly, using u = u′ − λv.
2
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Given a subspace U ⊆ V one is often interested in finding a spanning set
S ⊆ U . Particular importance will be attached to minimal spanning sets. In
order to prepare their study, we look at ways in which sets of vectors can be
redundant for the purpose of forming linear combinations.

2.4.2 Linear (in)dependence

Definition 2.4.5 Let V be an F-vector space and S ⊆ V . The set of vectors
S is linearly independent [linear unabhängig] iff for all u ∈ S:

u 6∈ span(S \ {u}).

Otherwise, i.e., if this condition fails to hold, S is said to be linearly
dependent.

Note that the empty set is, by definition, linearly independent as well.
Any set S with 0 ∈ S is linearly dependent.

A useful criterion for linear independence is established in the following.

Lemma 2.4.6 Let ∅ 6= S ⊆ V . The set of vectors S is linearly independent
iff for all k ∈ N and pairwise distinct u1, . . . ,uk ∈ S and all λ1, . . . , λk ∈ F:

λ1u1 + . . .+ λkuk = 0 =⇒ λ1 = λ2 = . . . = λk = 0.

A linear combination λ1u1 + . . .+ λkuk = 0 in which the ui are pairwise
distinct and not all coefficients λi are 0 is called a non-trivial linear combi-
nation of 0. The criterion says that S is linearly dependent iff it admits a
non-trivial linear combination of the null vector.

Proof. We show first that the criterion is necessary for linear indepen-
dence. Suppose S 6= ∅ violates the criterion: there is a non-trivial linear com-
bination 0 =

∑
i=1,...,k λiui with pairwise distinct ui ∈ S and, for instance

λ1 6= 0. Then u1 = −λ−11

∑
i=2,...,k λiui shows that u1 ∈ span(S \ {u1}). So

S is linearly dependent.
Conversely, to establish the sufficiency of the criterion, assume that S is

linearly dependent. Let u ∈ S and suppose that u ∈ span(S \ {u}). So
u =

∑
i=1,...,k λiui for suitable λi and ui ∈ S \ {u}, which may be chosen

pairwise distinct (why?). But then 0 = u +
∑

i=1,...,k(−λi)ui is a non-trivial
linear combination of 0 over S.

2
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Example 2.4.7 For a simple example consider sets S = {u,v} ⊆ R2 of
two vectors in R2. Suppose S is linearly dependent. Then there must be
(λ, µ) 6= (0, 0) such that λu + µv = 0. If, for instance, λ 6= 0, this implies
that u = (−µ/λ)v is a scalar multiple of v.

Conversely, if u,v 6= 0 and u and v are not scalar multiples of each other,
then {u,v} is linearly independent (why?).

Exercise 2.4.3 Show that {(1, 1, 2), (1, 2, 3), (1, 2, 4)} is linearly indepen-
dent in R3, and that {(1, 1, 2), (2, 1, 2), (1, 2, 4)} are linearly dependent.

Exercise 2.4.4 Show that the three functions x 7→ x, x 7→ x2 and x 7→ 1
form a linearly independent set in F(R,R).

Lemma 2.4.8 Let S be any set of n > m many vectors in Fm. Then S is
linearly dependent.

Proof. Let S = {u1, . . . ,un} where the ui are pairwise distinct. We need
to find coefficients λi such that

λ1u1 + . . .+ λnun = 0

but not all λi = 0.
Let ui = (a1i, . . . , ami) for i = 1, . . . , n. Then the condition that λ1u1 +

. . . + λnun = 0 is expressed by the following homogeneous system of linear
equations, in which λ1, . . . , λn play the role of the variables:

E :


a11λ1 + a12λ2 + · · ·+ a1nλn = 0

a21λ1 + a22λ2 + · · ·+ a2nλn = 0
...

am1λ1 + am2λ2 + · · ·+ amnλn = 0

Recalling how Gauß-Jordan applies to finding all the solutions of a system
like this, we know that – since there are more variables than equations – not
all variables λi can turn out to be pivot variables. But values for non-pivot
variables can be chosen freely, and then the tuple be completed to a solution.
If we choose λi = 1 for some non-pivot variable λi, we are guaranteed to find
a solution with λi 6= 0. This solution yields a non-trivial linear combination
of 0 over S. Therefore S is linearly dependent.

2
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Observation 2.4.9 There are sets of n vectors in Fn that are linearly inde-
pendent. For example, let, for i = 1, . . . , n, ei be the vector in Fn whose i-th
component is 1 and all others 0. So e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , en = (0, . . . , 0, 1). Then S = {e1, . . . , en} is linearly independent. More-
over, S spans Fn.

Proof. For linear independence, consider any linear combination over S
and note that ∑

i=1,...,n

λiei = (λ1, . . . , λn) ∈ Fn.

Therefore, if
∑

i=1,...,n λiei = 0 = (0, . . . , 0) it must be that λi = 0 for all i.

On the other hand, (λ1, . . . , λn) =
∑

i=1,...,n λiei shows that any vector in
Fn is a linear combination over S.

2

The following shows exactly how a linearly independent set can become
linearly dependent as one extra vector is added.

Lemma 2.4.10 Let S ⊆ V be linearly independent. If S ∪ {v} is linearly
dependent, then v ∈ span(S).

Proof. If S ∪{v} is linearly dependent there must be a non-trivial linear
combination of 0 over S ∪ {v},

0 = λv +
∑

i=1,...,k

λiui,

where the ui ∈ S are pairwise distinct. Here λ 6= 0, as otherwise already S
would be linearly dependent. Therefore

v = −λ−1
∑

i=1,...,k

λiui ∈ span(S).

2
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2.5 Bases and dimension

2.5.1 Bases

Definition 2.5.1 Let V be a vector space. A basis [Basis] of V is a set
B ⊆ V of vectors such that

(i) B spans V : V = span(B).

(ii) B is linearly independent.

In the case of the trivial vector space V = {0} consisting of just the
null vector, we admit B = ∅ as its basis (consistent with our stipulations
regarding spanning sets and linear independence in this case.)

An equivalent formulation is that a basis is a minimal subset of V that
spans V .

Exercise 2.5.1 Prove the equivalence of the following:

(i) B ⊆ V is a basis.

(ii) span(B) = V and for every b ∈ B, span(B \ {b})  V .

The following was already shown in Observation 2.4.9 above.

Example 2.5.2 The following is a basis for Fn, the so-called standard basis
of that space: B = {ei : 1 6 i 6 n} where for i = 1, . . . , n:

ei = (bi1, . . . , bin) with bij =

{
1 for i = j
0 else.

Example 2.5.3 Before we consider bases in general and finite bases in par-
ticular, we look at an example of a vector space for which we can exhibit a
basis, but which cannot have a finite basis. Consider the following subspace
U of the R-vector space F(N,R) of all real-valued sequences (ai)i∈N:

U := span({ui : i ∈ N})

where ui is the sequence which is 0 everywhere with the exception of the i-th
value which is 1. B := {ui : i ∈ N} ⊆ F(N,R) is linearly independent [show
this as an exercise]; so it forms a basis for U .

We note that U consists of precisely all those sequences in F(N,R) that
are zero in all but finitely many positions. Consider a sequence a = (ai)i∈N ∈
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U that is a linear combination over B; this linear combination involves only
finitely many of the sequences ui from B. Let m be the maximal index
i such that ui occurs with a non-zero coefficient in this representation of
a as a linear combination over B. As all the sequences ui with i 6 m
are zero in all places i > m, the same is true of a. So ai = 0 for all
i > m and any non-zero positions in (ai)i∈N must occur among a0, . . . , am.
Conversely, if a = (ai)i∈N and m are such that ai = 0 for all i > m, then
a =

∑
i=0,...,m aiui ∈ span(B) = U .

Assume now that U also had a finite basis, say B0 = {v1, . . . ,vk}. By the
above, each vi is a sequence that is zero from some point mi onwards. Let
m = max(mi). Then any sequence that is a linear combination over B0 must
be zero in all positions i > m. It follows that, for instance, um+1 6∈ span(B0),
contradicting the assumption that B0 spans U .

Exercise 2.5.2 Similarly provide infinite bases and show that there are no
finite bases for:

(i) Pol(R), the R-vector space of all polynomials over R.

(ii) F(N,Z2), the F2-vector space of all infinite bit-streams.

2.5.2 Finite-dimensional vector spaces

Definition 2.5.4 A vector space V is called finite-dimensional [endlich di-
mensional] iff V possesses a finite basis. Otherwise V is infinite-dimensional
[unendlich dimensional].

Proposition 2.5.5 Let B = {u1, . . . ,un} and B′ = {v1, . . . ,vm} be (finite)
bases of V with n and m elements, respectively. Then n = m.

Proof. We give an indirect proof of the proposition. Assume n > m. We
will show that B cannot in fact be linearly independent. The proof is strictly
analogous to the one in Lemma 2.4.8.

We want to find coefficients λi in a non-trivial linear combination

λ1u1 + . . .+ λnun =
∑

i=1,...,n

λiui = 0.

Let, for i = 1, . . . , n,

ui =
∑

j=1,...,m

ajivj.
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Such representations exist as B′ spans V . Now the condition that λ1u1 +
. . .+ λnun = 0 is equivalent with∑

i=1,...,n

λi

( ∑
j=1,...,m

ajivj

)
= 0.

Regrouping these terms we get∑
j=1,...,m

( ∑
i=1,...,n

ajiλi

)
vj = 0.

As the vj form a basis (linear independence) this is equivalent with∑
i=1,...,n

ajiλi = 0 for j = 1, . . . ,m.

Now this is the same homogeneous system of linear equations over Fn as
considered in Lemma 2.4.8. We argued there that this system must have
non-trivial solutions for the λi since this system has more variables than
equations.

We therefore conclude that B is linearly dependent, contradicting the
assumption that it was a basis.

2

The proposition justifies the following definition.

Definition 2.5.6 For finite-dimensional V we let its dimension [Dimension],
dim(V ), be the size of a (any) basis of V . So V is n-dimensional, dim(V ) = n,
iff V has a basis consisting of precisely n vectors.

Lemma 2.5.7 Let dim(V ) = n and B = {b1, . . . ,bn} a basis. Then the
coefficients in any linear combination over B are uniquely determined in the
following sense. For all λ1, . . . , λn, µ1, . . . , µn ∈ F:∑

i=1,...,n

λibi =
∑

i=1,...,n

µibi ⇒ λi = µi for all i.

Proof. The given equality implies
∑

i=1,...,n(λi − µi)bi = 0. As B is
linearly independent, λi − µi = 0 and hence λi = µi, for i = 1, . . . , n.

2
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We sometimes want to be able to identify individual basis vectors in a
basis, and for this introduce the notion of a labelled basis (also sometimes
called ordered basis [geordnete Basis]), which is not a set of basis vectors but
a labelled family or tuple of basis vectors.

Definition 2.5.8 A labelled basis of a vector space V is a family of vectors
(bi)i∈I indexed by some index set I such that bi 6= bj for i 6= j ∈ I and
{bi : i ∈ I} forms a basis. In the finite-dimensional case, if dim(V ) = n, we
may use the index set I = {1, . . . , n}, and a labelled basis is just an n-tuple
of pairwise distinct vectors that are linearly independent.

With a labelled basis B = (b1, . . . ,bn) of the n-dimensional F-vector
space V associate the following two maps:

ξB : Fn −→ V
(λ1, . . . , λn) 7−→

∑
i=1,...,n λibi

and [[·]]B : V −→ Fn
v 7−→ (λ1, . . . , λn) if v =

∑
i=1,...,n λibi.

That [[v]]B is well-defined follows from the previous lemma. Clearly both
maps are linear, and inverses of each other. It follows that they constitute (an
inverse pair of) vector space isomorphisms between V and Fn. In particular
we get the following.

Corollary 2.5.9 Any F-vector space of dimension n is isomorphic to Fn.

Exercise 2.5.3 Consider the R-vector space Fib of all Fibonacci sequences
(compare Example 2.2.4, where Fib was considered as a subspace of F(N,R)).

Recall that a sequence (ai)i∈N = (a0, a1, a2, . . .) is a Fibonacci sequence
iff

ai+2 = ai + ai+1 for all i ∈ N.

(a) Show that the space Fib has a basis consisting of two sequences; hence
its dimension is 2.

(b) Show that Fib contains precisely two different geometric sequences, i.e.,
sequences of the form

ai = ρi, i = 0, 1, . . .
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for some real ρ 6= 0. [In fact the two reals involved are the so-called
golden ratio and its negative reciprocal.]

(c) Show that the two sequences from part (b) are linearly independent,
hence also from a basis.

(d) Express the standard Fibonacci sequence f = (0, 1, 1, 2, 3, . . .) as a lin-
ear combination in the basis obtained in part (c). This yields a rather
surprising closed term representation for the i-th member in f .

We now analyse more closely the connection between bases, spanning sets
and linearly independent sets in the finite dimensional case.

Lemma 2.5.10 If V is spanned by a set S of m vectors, then V has a basis
B ⊆ S. It follows that dim(V ) 6 m.

Proof. Let S = {u1, . . . ,um} and suppose V = span(S). We obtain a
basis B ⊆ S for V by succesively selecting members of S and discarding
redundant members.

The iteration generates a sequence ∅ = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sm ⊆ S of
linearly independent subsets Si ⊆ S such that span(Si) = span({uj : j 6 i}).
Then B := Sm will be as desired. It remains to define the Si.

Let S0 := ∅. Inductively let, for 0 6 i < m,

Si+1 :=

{
Si ∪ {ui+1} if ui+1 6∈ span(Si),
Si if ui+1 ∈ span(Si).

The case distinction guarantees that all Si are linearly independent (com-
pare Lemma 2.4.10) and that ui ∈ span(Si) for i 6 m.

2

Corollary 2.5.11 Let dim(V ) = n. Then

(a) any set S of m > n many vectors in V is linearly dependent.

(b) any set S of m < n vectors in V fails to span V .

Proof. (a) was shown in the proof of Proposition 2.5.5. (b) then follows
from the previous lemma.

2
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The argument in Lemma 2.5.10 can be extended as follows. Suppose we
are given a finite spanning set S as above and a set A of linearly independent
vectors, which we want to include in the basis we construct.

Let S = {u1, . . . ,um} with span(S) = V , and let A ⊆ V be linearly
independent.

We can now use a variant of the above iteration to generate a basis com-
prising A, by starting from S0 := A rather than S0 = ∅, and then proceeding
as above. Then B := Sm ⊇ A is a basis consisting of A and vectors from S.
We have proved the following variant of Lemma 2.5.10.

Lemma 2.5.12 Let V be a finite-dimensional vector space, spanned by S =
{u1, . . . ,um}. Let A ⊆ V be any linearly independent set of vectors.

Then A can be extended to a basis B of V using vectors from S. We
obtain a basis B with A ⊆ B ⊆ A ∪ S.

In the special case where S is itself a basis, we obtain the so-called Steinitz
exchange property [Steinitzscher Austauschsatz].

Corollary 2.5.13 Let dim(V ) = n, B = {b1, . . . ,bn} be a basis of V . Let
A ⊆ V be any linearly independent set.

Then there is a basis B̂ of V with A ⊆ B̂ ⊆ A ∪B.
Equivalently: there is a subset B0 ⊆ B such that (B \B0) ∪A is a basis.

Proof. Use the previous lemma, with B in the place of S and call the
resulting basis B̂. For the second formulation let B0 := B \ B̂.

2

The second formulation explains the name exchange property [Austausch-
eigenschaft] for this phenomenon. The members of B0 are exchanged for the
members of A in the new basis. We know from Proposition 2.5.5 that B and
B̂, and hence also B0 and A must have the same size.

The following is another important corollary, known as the basis extension
theorem [Basisergänzungssatz]. For its proof use any basis and apply the
exchange property choosing the given linearly independent set for A.

Corollary 2.5.14 Let V be finite-dimensional. Any linearly independent set
of vectors in V can be extended to a basis of V .
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2.5.3 Dimensions of linear and affine subspaces

Let V be a finite-dimensional vector space.
If U ⊆ V is a (linear) subspace of V , then dim(U) is just the dimension

of U considered as a vector space in its own right. It follows from Corol-
lary 2.5.11 that dim(U) 6 dim(V ), where dim(U) = dim(V ) iff U = V .

Affine subspaces (of a vector space V ) have the form S = v + U for a
linear subspace U of V , and this U is uniquely determined by S, compare
Exercise 2.2.4.

Definition 2.5.15 For an affine subspace S = v + U : dim(S) := dim(U).

If dim(V ) = n, the following terminology is often used

dimension 1 2 n− 1
affine subspaces lines planes hyperplanes

Exercise 2.5.4 Let dim(V ) = n, S ⊆ V a set of m 6 n vectors. Show
that there is a linear subspace U ⊆ V with S ⊆ U and dim(U) = m; if S
is linearly independent then U is uniquely determined by this requirement.
[Hint: put U := span(S) and apply reasoning as in Corollary 2.5.11].

Proposition 2.5.16 Let dim(V ) = n, S0 ⊆ V a set of m vectors, where
1 6 m 6 n + 1. Then there is an affine subspace S ⊆ V with S0 ⊆ S and
dim(S) = m − 1. Such S is uniquely determined if, for some/any u0 ∈ S0

the set {u− u0 : u ∈ S0 \ {u0}} is linearly independent.

Proof. Choose some u0 ∈ S0, let Su0 := {u−u0 : u ∈ S0 \ {u0}} and put
U := span(Su0). It is clear that S = u0 + U is an affine subspace of V with
S0 ⊆ S and dim(S) 6 m− 1.

For the uniqueness claim, observe that any affine subspace S ⊇ S0 must
contain u0 + span(Su0). If Su0 is linearly independent then there is a unique
subspace U of dimension m− 1 that contains span(Su0), namely span(Su0).
It follows that S = u0 + span(Su0) is also uniquely determined.

2

Exercise 2.5.5 Rephrase the above in term of point sets in an affine space,
using the terminology of section 2.3.
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2.5.4 Existence of bases

There is a general theorem that guarantees the existence of bases for any
vector space – finite or infinite dimensional. Its proof is “non-constructive”,
i.e., it does not provide any explicit recipe for the construction of a basis in
the general case (that would maybe be too much to expect). This general
proof is based on an interesting principle of infinitary combinatorics known
as Zorn’s Lemma [Zornsches Lemma], which is logically equivalent (in the
standard framework of set theory) with the Axiom of Choice [Auswahlaxiom].

We do not want to go into these details which are of a more foundational
or logical nature. We mention these facts for the sake of completeness. The
following is (a version of) Zorn’s Lemma, which we then use without proof.
For finite sets A, it can be proved from scratch.

Lemma 2.5.17 Let S 6= ∅ be a collection of subsets of the set A. Assume
that S has the following property

• whenever (Si)i∈I is a family of sets in S such that for any two members
Si and Sj of this family either Si ⊆ Sj or Sj ⊆ Si, then

⋃
i∈I Si ∈ S.

Then S has maximal elements. A maximal element is an S ∈ S such that
S  S ′ for no S ′ ∈ S.

Theorem 2.5.18 Every vector space has a basis. A basis may be obtained
as a maximal element in S := {S ⊆ V : S linearly independent }.

The proof on the basis of the lemma is not difficult. One firstly verifies
that this S has the property required in the lemma. One then shows that
any maximal element in this system S is a basis. Any element of S is linearly
independent by definition. It remains to argue that a maximal element must
be spanning for V .

Suppose S is a maximal element in S. Assume span(S)  V . There must
be some v ∈ V \ span(S). But then S ∪{v} ! S is still linearly independent
by Lemma 2.4.10. And this contradicts the maximality of S.

We concentrate again on the finite-dimensional case. The following is
a “constructive” version of the above maximality argument. It re-proves
Corollary 2.5.14. The analogue in the infinite-dimensional case can also be
proved, with an application of Zorn’s Lemma.

Lemma 2.5.19 Let S ⊆ V be linearly independent, V finite-dimensional.
Then S can be extended to a basis B ⊇ S of V .
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Proof. Construct an increasing chain of linearly independent subsets S =
S0  S1  · · ·  Sm = Sm+1 =: B until a basis is reached. Let S0 = S. For
i = 0, 1, . . . do

Si+1 :=

{
Si if span(Si) = V
Si ∪ {v} for some v ∈ V \ span(Si) else.

The condition on the choice of v ensures that Si+1 will also be linearly
independent. The sequence of the Si becomes constant only when a basis is
reached.

But this must happen before step n + 1 if dim(V ) = n, because Corol-
lary 2.5.11 tells us that we cannot have sets of more than n linearly indepen-
dent vectors in V .

2

2.6 Products, sums and quotients of spaces

This section provides some of the standard methods to construct new vector
spaces (or subspaces) from old – constructions that also occur naturally in
applications when linear phenomena are being modelled by vector spaces.
We accompany each construction principle with an account of the dimensions
involved in the finite-dimensional case and of corresponding bases.

2.6.1 Direct products

Definition 2.6.1 Let U and V be vector spaces over the same field F. Their
direct product [direktes Produkt] is the following F-vector space W . The set
of vectors of W is the cartesian product W = U × V = {(u,v) : u ∈ U,v ∈
V }. Vector addition and scalar multiplication are defined component-wise
according to

+: (U × V )× (U × V ) −→ U × V
((u,v), (u′,v′)) 7−→ (u + u′,v + v′)

· : F× (U × V ) −→ U × V
(λ, (u,v)) 7−→ (λu, λv)

Exercise 2.6.1 Check that U × V with vector addition and scalar multi-
plication as given and with null vector 0 = (0U ,0V ) ∈ U × V satisfies the
vector space axioms.
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The following represents the situation diagrammatically.

U

V

u

v
(u,v)

//

OO

+3

KS 4<qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq

The direct product extends in a natural way to any number of factors.
In particular, we write V n for V × V × · · · × V︸ ︷︷ ︸

n times

.

Noting that F = F1 can be regarded as a 1-dimensional vector space over
F, we may re-interpret Fn – the standard n-dimensional F-vector space – as
the n-fold direct product of F with itself.

Proposition 2.6.2 If B(1) is a basis of V1 and B(2) a basis of V2, then the
following is a basis for the direct product V = V1 × V2:

B := {(b(1),0(2)) : b(1) ∈ B(1)} ∪ {(0(1),b(2)) : b(2) ∈ B(2)},

where 0(i) stands for the null vector in Vi.
It follows that in the finite-dimensional case,

dim(V1 × V2) = dim(V1) + dim(V2).

Proof. We leave the verification of linear independence of B in V1 × V2
as an exercise.

To see that span(B) = V1 × V2, note that if v(1) =
∑

i λ
(1)

i b(1)

i is a
representation of v(1) ∈ V1 as a linear combination over B(1) and similarly
v(2) =

∑
j µ

(2)

j b(2)

j in V2 and over B(2), then in V1 × V2:

(v(1),v(2)) =
∑
i

λ(1)

i (b(1)

i ,0) +
∑
j

µ(2)

j (0,b(2)

j ).

2
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2.6.2 Direct sums of subspaces

Definition 2.6.3 Let U,W ⊆ V be subspaces of the F-vector space V .

(i) The sum [Summe] of U and W , denoted U+W , is the subspace spanned
by U ∪W .

(ii) If U ∩W = {0}, the sum U+W is called a direct sum [direkte Summe],
written U ⊕W .

(iii) In the case that a direct sum spans all of V , V = U ⊕W , U and W
are linear complements [Komplementärräume] of each other.

Observation 2.6.4 For any two subspaces U,W ⊆ V :

U +W = {u + w : u ∈ U,w ∈ W}.

If the sum is direct, then every v ∈ U ⊕W has a unique decomposition

v = u + w where u ∈ U,w ∈ W.

Proof. We only prove the uniqueness claim in U ⊕W . Let v = u + w =
u′ + w′ where u,u′ ∈ U,w,w′ ∈ W .

It follows that u−u′ = w′−w ∈ U∩W . As the sum is direct, U∩W = {0}
and thus u− u′ = w′ −w = 0. So u = u′ and w = w′ follows.

2

This shows an interesting parallel between direct sums and products of
two subspaces of the same vector space V .

Remark 2.6.5 Let subspaces U1, U2 ⊆ V be such that U1∩U2 = {0}. Then
the direct product U1 × U2 is isomorphic to the direct sum U1 ⊕ U2.

Proof. In the light of the unique decomposition described in the observa-
tion above, we get an isomorphism of vector spaces (Definition 2.1.3) based
on the mapping

ϕ : U1 × U2 −→ U1 ⊕ U2

(u(1),u(2)) 7−→ u(1) + u(2).

2

Proposition 2.6.6 Let U1, U2 ⊆ V be finite-dimensional subspaces of V .
Then

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).
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Proof. Note first that U0 := U1 ∩ U2 is also a subspace of V (compare
Lemma 2.2.3) and as it is contained in the given Ui, it must itself be finite-
dimensional. Let dim(U0) = n0 and let B0 = {b(0)

1 , . . . ,b
(0)
n0
} be a basis for

U0.
By Corollary 2.5.14, and as B0 is a linearly independent subset both of

U1 and of U2, we may extend B0 in two different ways to obtain bases B1 of
U1 and B2 of U2, respectively. Let B1 = B0∪{b(1)

1 , . . . ,b
(1)
m1
} be the resulting

basis of U1, with m1 pairwise distinct new basis vectors b(1)

i . Similarly let
B2 = B0 ∪ {b(2)

1 , . . . ,b
(2)
m2
} be the basis of U2, with m2 pairwise distinct new

basis vectors b(2)

i . So dim(U1) = n0 +m1 and dim(U2) = n0 +m2.
We claim that

B = B0 ∪ {b(1)

1 , . . . ,b
(1)

m1
} ∪ {b(2)

1 , . . . ,b
(2)

m2
}

is a basis for U = U1 + U2. The dimension formula then follows as the
above implies dim(U) = n0 + m1 + m2 = (n0 + m1) + (n0 + m2) − n0 =
dim(U1) + dim(U2)− dim(U1 ∩ U2).

It remains to show that B is a basis. To establish linear independence,
assume

0 =
∑

i=1,...,n0

λ(0)

i b(0)

i︸ ︷︷ ︸
=:u0

+
∑

j=1,...,m1

λ(1)

j b(1)

j︸ ︷︷ ︸
=:u1

+
∑

k=1,...,m2

λ(2)

k b(2)

k︸ ︷︷ ︸
=:u2

.

We need to show that this linear combination is trivial.
The equation implies that u1 = −u0 − u2 ∈ U1 ∩ U2 = U0 and similarly

u2 = −u0 − u1 ∈ U0.
By uniqueness of coefficients over bases (Lemma 2.5.7) we find that,

for instance, u2 = 0 as u1 ∈ U0 means it can also be expressed with-
out contributions b(2)

k . Similarly, we conclude that u1 = 0, whence also
u0 = −u1 − u2 = 0.

Now each ui = 0, for i = 0, 1, 2, is expressed as a linear combination over
a basis; this linear combination must therefore be trivial, i.e., all coefficients
are 0, as we wanted to show.

It is obvious that B spans U1 + U2.
2

Example 2.6.7 Consider two 2-dimensional subspaces U1, U2 ⊆ R3. If (and
only if) U1 = U2 can dim(U1 ∩ U2) be 2.
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Otherwise, U1 ∪ U2 spans all of R3 (why?), i.e., U1 + U2 = R3. With the
above dimension formula we find that

3 = dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2) = 4− dim(U1 ∩ U2),

whence dim(U1 ∩ U2) = 1 and we see that U1 ∩ U2 is a line through 0.

Exercise 2.6.2 Transfer the reasoning of the example to the intersection of
two 2-dimensional affine subspaces of R3.

2.6.3 Quotient spaces

Consider a subspace U ⊆ V and imagine we want to look at vectors v ∈ V
only up to components in U , i.e., we disregard any differences that lie within
U . [Think of looking in the direction of U : what you see of v and w is the
same; this is what we formalise as a quotient of V with respect to U in the
following.]

0

U

w + U = v + U
•

•v 11ccccccccccccccccccc

w
;;wwwwwwwwwwww

OOOOOOOOOOOOOOOOOOOOO

O O O O O O O O O O O O O O O O O O

We let ≡U be the following equivalence relation on V :

v ≡U w iff w − v ∈ U.

This is the same as to say that v + U = w + U (equality of affine sub-
spaces).

Exercise 2.6.3 Verify that ≡U is an equivalence relation on V (compare
section 1.2.3).

The quotient space [Quotientenraum] W := V/U has as its vectors the
equivalence classes w.r.t. ≡U . Let us write

[v]U := {w ∈ V : v ≡U w} = v + U

for the equivalence class of v.
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We check that the following are well defined (independent of the repre-
sentatives we pick from each equivalence class) as operations on these equiv-
alence classes:

[v1]U + [v2]U := [v1 + v2]U ,
λ · [v]U := [λv]U .

For +, for instance, we need to check that, if v1 ≡U v′1 and v2 ≡U v′2 then
also (v1 +v2) ≡U (v′1 +v′2) (so that the resulting class [v1 +v2]U = [v′1 +v′2]U
is the same).

For this observe that v1 ≡U v′1 and v2 ≡U v′2 imply that v′1 = v1+u1 and
v′2 = v2+u2 for suitable u1,u2 ∈ U . But then (v′1+v′2) = (v1+v2)+(u1+u2)
and as u1 + u2 ∈ U , (v1 + v2) ≡U (v′1 + v′2) follows.

The corresponding well-definedness for scalar multiplication is checked in
a similar way.

Definition 2.6.8 Let U ⊆ V be a subspace of the F-vector space V . The
quotient space [Quotientenraum] V/U is the F-vector space whose vectors are
the equivalence classes [v]U = v + U with respect to ≡U , with addition and
scalar multiplication as defined above. Its null vector is the equivalence class
[0V ]U = 0 + U = U .

Exercise 2.6.4 Check the vector space axioms for V/U .

Quotients and direct sums Consider a direct sum V = W ⊕ U , so that
W is a complement of U in V .

We claim that every equivalence class (affine subspace) [v]U = v + U
contains precisely one vector w ∈ W .

Existence: as V = W + U , we know that v = w + u for some choice of
w ∈ W and u ∈ U . Then [v]U = [w]U and w ∈ W ∩ [v]U .

Uniqueness: Let w,w′ ∈ [v]U for w,w′ ∈ W . Then w −w′ ∈ U . As the
sum V = W ⊕ U is direct, and as w − w′ ∈ W ∩ U = {0}, we find that
w −w′ = 0 and w = w′ shows uniqueness as claimed.

This observation is the basis of the following.

Lemma 2.6.9 (W ⊕ U)/U is isomorphic to W : a quotient space w.r.t. a
subspace U is isomorphic to any complement of U in V .

Proof. Let, for [v]U ∈ V/U , its image ϕ(v) ∈ W be the unique w ∈
W ∩ [v]U . We check that ϕ : V/U → W is a vector space isomorphism.
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ϕ is bijective: injectivity was shown above;
surjectivity: ϕ([w]U) = w for every w ∈ W .

ϕ is compatible with vector addition and scalar multiplication [check this
as an exercise!].

2

We get a corollary about (finite) dimensions, if we observe that in the
above situation dim(V ) = dim(W ) + dim(U) and dim(V/U) = dim(W ) due
to isomorphy.

Corollary 2.6.10 If V is finite-dimensional, then

dim(V/U) = dim(V )− dim(U)

for any subspace U ⊆ V .
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Chapter 3

Linear Maps

3.1 Linear maps as homomorphisms

We consider maps from one F-vector space to another.

Definition 3.1.1 A function ϕ : V → W between F-vector spaces V and
W (the same F!) is called linear (a linear map or linear function [lineare
Abbildung]) if for all v,v′ ∈ V :

ϕ(v + v′) = ϕ(v) + ϕ(v′)

and for all v ∈ V and λ ∈ F:

ϕ(λv) = λϕ(v).

If ϕ is linear, it follows that it is compatible with arbitrary linear com-
binations. One shows by induction on n that for any vi ∈ V and λi ∈ F,
i = 1, . . . , n:

ϕ
( ∑
i=1,...,n

λivi
)

=
∑

i=1,...,n

λiϕ(vi).

Observation 3.1.2 If ϕ : V → W is linear, then ϕ(0V ) = 0W .

Proof. By linearity, ϕ(0) = ϕ(λ0) = λϕ(0) for all λ ∈ F. Choosing
λ = 0 ∈ F, we see that ϕ(0) = 0ϕ(0) = 0.

2

81
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Linear maps are precisely the maps that preserve linear structure: they
are compatible with vector addition and scalar multiplication and preserve
null vectors. However, they need neither be injective nor surjective in general.

The diagram indicates this compatibility for a simple linear combination
of two vectors with two arbitrary scalars.

(v,v′) λv + λ′v′

(w,w′) λw + λ′w′

in V //

in W //

ϕ

��

ϕ

��

ϕ

��

We have seen such structure preserving maps already when we discussed
isomorphisms between vector spaces (compare Definition 2.1.3). Vector space
isomorphisms are particular instances of linear maps between vector spaces,
namely bijective linear maps.

Remark 3.1.3 Structure preserving maps are called homomorphisms [Ho-
momorphismen]. For vector spaces, they are called vector space homomor-
phisms. F-vector space homomorphisms are precisely the linear maps be-
tween F-vector spaces.

Homomorphisms may be classified according to their primary properties
as maps (in particular injectivity and/or surjectivity) as follows. 1

Zoology of (vector space) homomorphisms

Definition 3.1.4 Let V and W be F-vector spaces, ϕ : V → W a linear map
(i.e., an F-vector space homomorphism). Then ϕ is

(i) an epimorphism [Epimorphismus] iff it is surjective.

(ii) a monomorphism [Monomorphismus] iff it is injective.

(iii) an isomorphism [Isomorphismus] iff it is bijective. 2

1This classification of homomorphisms actually extends beyond the setting of vector
spaces. Structure preserving maps in any other class of mathematical structures are sim-
ilarly important and are classified according to the same terminology.

2Check that this is equivalent with Definition 2.1.3.
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In the particular case where W = V , i.e., for a linear map ϕ : V → V from
V to itself, one speaks of an endomorphism [Endomorphismus]. A bijective
endomorphism – an isomorphism of V with itself – is called an automorphism
[Automorphismus].

Vector space automorphisms play a special role: they are the symmetries
of the linear structure of a vector space, namely permutations of the set of
vectors that are compatible with vector addition, scalar multiplication and
0.

3.1.1 Images and kernels

With any linear map ϕ : V → W between F-vector spaces we associate two
important sets (in fact subspaces): the image and the kernel of ϕ.

Definition 3.1.5 Let V and W be F-vector spaces, ϕ : V → W linear. The
image [Bild] of ϕ (as for any function) is defined to be the set

image(ϕ) = {ϕ(v) : v ∈ V } ⊆ W.

The kernel [Kern] of ϕ is the set

ker(ϕ) := {v ∈ V : ϕ(v) = 0} ⊆ V.

�~}|xyz{ gfed`abc
V

•0
image(ϕ)

�~}|xyz{
W

•0
YYYYYYYYYYYYYYYYYYYYYYYY

```````````````````````

ϕ //

�~}|xyz{_^]\XYZ[
V

•0
ker(ϕ)

�~}|xyz{
W

•0..̂^^^^^^^^^^^^^^^^^^^^
33gggggggggggggggggggggg

ϕ //

Lemma 3.1.6 image(ϕ) ⊆ W is a subspace of W and ker(ϕ) ⊆ V is a
subspace of V .

Proof. image(ϕ) ⊆ W is a subspace. We check the closure conditions.
Firstly, by linearity 0 = ϕ(0) ∈ image(ϕ). Secondly, if w1,w2 ∈ image(ϕ),
then wi = ϕ(vi) for suitable v1,v2 ∈ V . Therefore, as a consequence of
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linearity, λ1w1 + λ2w2 = λ1ϕ(v1) + λ2ϕ(v2) = ϕ(λ1v1 + λ2v2) ∈ image(ϕ),
for any λ1, λ2 ∈ F.

ker(ϕ) ⊆ V is a subspace. We check the closure conditions. Firstly, 0 ∈
ker(ϕ) as ϕ(0) = 0 is a consequence of linearity. Secondly, if v1,v2 ∈ ker(ϕ),
then ϕ(vi) = 0. Linearity implies that ϕ(λ1v1+λ2v2) = λ1ϕ(v1)+λ2ϕ(v2) =
0 and hence λ1v1 + λ2v2 ∈ ker(ϕ).

2

The following explains the great importance of kernels in the analysis of
linear maps.

Lemma 3.1.7 Let V and W be F-vector spaces, ϕ : V → W linear. Then ϕ
is injective (a monomorphism) iff ker(ϕ) = {0}.

Proof. Assume first ϕ is injective. Then any w ∈ image(ϕ) has just one
pre-image in V : there is precisely one v ∈ V such that ϕ(v) = w. For w = 0
(in W ) this implies that, 0 (in V ) is the only vector in ker(ϕ).

Conversely, if ϕ is not injective, then there are u 6= v in V such that
ϕ(u) = ϕ(v). By linearity ϕ(u − v) = ϕ(u) − ϕ(v) = 0. As u 6= v implies
that u− v 6= 0, we find that ker(ϕ) 6= {0}.

2

3.1.2 Linear maps, bases and dimensions

Most of the basic assertions in this section extend to the infinite-dimensional
case, with strictly analogous proofs. However, we restrict attention to the
finite-dimensional case for the sake of simplicity.

Recall the notion of labelled bases from Definition 2.5.8.
The following are important existence and uniqueness properties for linear

maps in terms of prescribed values on a basis.

Proposition 3.1.8 Let V and W be F-vector spaces, dim(V ) = n and B =
(b1, . . . ,bn) a labelled basis of V . Let f : {b1, . . . ,bn} → W be an arbitrary
function that maps every basis vector bi in B to some vector f(bi) ∈ W .
Then there is a unique linear map ϕ : V → W with ϕ(bi) = f(bi) for all i.
In other words, a linear map is fully determined by its values on any set of
vectors that form a basis – and any choice of image vectors for these basis
vectors can be realised by some linear map.
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Proof. Uniqueness. Let ϕ be as stipulated. As the basis spans V , any
v ∈ V has a representation as v =

∑
i λibi (3) for suitable λi ∈ F. By

linearity, ϕ(v) is determined as

ϕ(v) = ϕ(
∑

i λibi) =
∑
i

λiϕ(bi) =
∑
i

λif(bi).

This implies that ϕ is uniquely determined by f and the linearity require-
ment.

Existence. We know from Lemma 2.5.7 that the representation of v ∈ V
as a linear combination v =

∑
i λibi uniquely determines the coefficients

λi ∈ F. ϕ is therefore well-defined as a function ϕ : V → W by putting

ϕ(v) :=
∑
i

λif(bi) for v =
∑
i

λibi.

Clearly this stipulation yields a function ϕ : V → W , which agrees with f
on the basis vectors bi. Moreover, ϕ is linear. For instance, if v′ = λv, then
ϕ(v′) = ϕ(λ

∑
i λibi) = ϕ(

∑
i(λλi)bi) =

∑
i(λλi)f(bi) = λ

∑
i λif(bi) =

λϕ(v). Compatibility with vector addition is checked analogously.
2

Lemma 3.1.9 Let B ⊆ V be a basis of V , ϕ : V → W a linear map. Let
ϕ(B) := {ϕ(b) : b ∈ B}. Then ϕ(B) spans image(ϕ) ⊆ W .

Proof. Let w ∈ image(ϕ), i.e., w = ϕ(v) for some v ∈ V . If v =
∑

i λibi
then w = ϕ(v) = ϕ(

∑
i λibi) =

∑
i λiϕ(bi) ∈ span(ϕ(B)).

2

Lemma 3.1.10 Let (b1, . . . ,bn) be a labelled basis of V and ϕ : V → W an
injective linear map (a monomorphism).

Then (ϕ(b1), . . . , ϕ(bn)) is a labelled basis of image(ϕ) ⊆ W . It follows
that dim(image(ϕ)) = dim(V ) and that

ϕ′ : V −→ image(ϕ) ⊆ W
v 7−→ ϕ(v)

is a vector space isomorphism.

3We sometimes drop the explicit bounds in summations if they are clear from context
or do not matter. We write, for instance just v =

∑
i λibi instead of v =

∑n
i=1 λibi when

working over a fixed labelled basis (b1, . . . ,bn).
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Proof. Let ϕ be injective. As bi 6= bj for i 6= j, injectivity implies that
also ϕ(bi) 6= ϕ(bj) for i 6= j. Hence the members of (ϕ(b1), . . . , ϕ(bn)) are
pairwise distinct.

By the previous lemma, ϕ(b1), . . . , ϕ(bn) span image(ϕ). It remains to
show that the ϕ(bi) are linearly independent in W . Let

∑
i λiϕ(bi) = 0.

Therefore ϕ(
∑

i λibi) =
∑

i λiϕ(bi) = 0. As ker(ϕ) = {0} (Lemma 3.1.7),
this implies that

∑
i λibi = 0. As the bi form a basis, λi = 0 for all i

and the linear combination
∑

i λiϕ(bi) = 0 is trivial. Hence the ϕ(bi) are
also linearly independent, and therefore form a labelled basis. Clearly ϕ′ is
surjective onto image(ϕ) and hence we obtain an isomorphism between V
and image(ϕ).

2

In the special case of a vector space isomorphism ϕ : V → W , image(ϕ) =
W and hence (ϕ(b1), . . . , ϕ(bn)) is a labelled basis of W . This implies the
following.

Corollary 3.1.11 (a) If ϕ : V → W is an isomorphism and (b1, . . . ,bn)
a labelled basis of V , then (ϕ(b1), . . . , ϕ(bn)) is a labelled basis of W .

(b) Let dim(V ) = dim(W ) = n. Any choice of labelled bases (b1, . . . ,bn)
of V and (b′1, . . . ,b

′
n) of W gives rise to a unique vector space isomor-

phism ϕ between V and W such that ϕ(bi) = b′i.

Proof. (b) is a direct application of Proposition 3.1.8.

(a) restates Lemma 3.1.10 for isomorphisms (surjective monomorphisms).

2

The assertions of the corollary are particularly interesting also for the
case of automorphisms, i.e., isomorphisms ϕ : V → V . Here we see that ϕ
switches from one labelled bases of V to another.

The dimension formula We already saw that isomorphisms preserve di-
mensions, that monomorphisms have kernel dimension 0 and that the image
under a monomorphism has the same dimension as the domain. These ob-
servations are generalised in the following important dimension formula.
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Theorem 3.1.12 Let V,W be finite-dimensional F-vector spaces, ϕ : V →
W a linear map (vector space homomorphism). Then

dim(V ) = dim(ker(ϕ)) + dim(image(ϕ)).

Proof. Let dim(V ) = n, dim(ker(ϕ)) = k.
We firstly choose a labelled basis Bk = (b1, . . . ,bk) of the subspace

ker(ϕ) ⊆ V . Next we extend Bk to a basis of all of V , with a further
` = n− k many vectors a1, . . . , a` such that B = (b1, . . . ,bk, a1, . . . , a`) be-
comes a labelled basis of V . [NB: ` = n − k = 0 is a possibility, namely if
ker(ϕ) = V .]

We claim that (ϕ(a1), . . . , ϕ(a`)) is a labelled basis of image(ϕ). That
proves the dimension formula, as it implies that dim(image(ϕ)) = ` = n− k.

Clearly ϕ(a1), . . . , ϕ(a`) ∈ image(ϕ). These vectors are also pairwise
distinct: suppose ϕ(ai) = ϕ(aj) for some 1 6 i < j 6 `, then ϕ(ai − aj) = 0
and hence a := ai − aj a vector in ker(ϕ). So a is a linear combination

a =
∑k

i=1 λibi and therefore ai − aj −
∑k

i=1 λibi = 0 is a non-trivial linear
combination of 0 over a basis, which is a contradiction.

A similar argument shows that the ϕ(ai) are linearly independent: if∑`
i=1 µiϕ(ai) = 0, then ϕ(

∑`
i=1 µiai) = 0, whence a :=

∑`
i=1 µiai ∈ ker(ϕ).

Then a =
∑k

i=1 λibi for suitable λi and therefore
∑k

i=1 λibi −
∑`

i=1 µiai =
0 would be a non-trivial linear combination of 0 over a basis, which is a
contradiction.

Now image(ϕ) is spanned by ϕ(b1), . . . , ϕ(bk), ϕ(a1), . . . , ϕ(a`), and (as
ϕ(bi) = 0) also by just ϕ(a1), . . . , ϕ(a`). So (ϕ(a1), . . . , ϕ(a`)) is a labelled
basis of image(ϕ).

2

Exercise 3.1.1 Show that a homomorphism ϕ : V → W between finite-
dimensional F-vector spaces V and W , is surjective iff dim(image(ϕ)) =
dim(W ).

Exercise 3.1.2 For a homomorphism ϕ : V → W let U := ker(ϕ) ⊆ V ,
and consider the quotient space V/U with elements v + U . Show that the
following map is a well-defined monomorphism:

ϕU : V/U −→ W
[v]U = v + U 7−→ ϕ(v).
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3.2 Vector spaces of homomorphisms

3.2.1 Linear structure on homomorphisms

Definition 3.2.1 For F-vector spaces V,W , Hom(V,W ) denotes the set of
all linear maps ϕ : V → W .

Hom(V,W ) carries natural linear structure. Namely, there are natu-
ral addition operation (point-wise addition of functions) and scalar multi-
plication (point-wise multiplication by a scalar for functions). Indeed, for
ϕ, ψ ∈ Hom(V,W ) and λ ∈ F the following maps are also members of
Hom(V,W ):

(ϕ+ ψ) : V −→ W
v 7−→ ϕ(v) + ψ(v). (point-wise addition)

(λϕ) : V −→ W
v 7−→ λϕ(v). (point-wise scalar multiplication)

With these two operations, Hom(V,W ) is itself an F-vector space.

Proposition 3.2.2 Hom(V,W ) with point-wise addition and scalar multi-
plication and with the constant map 0 : v 7→ 0 ∈ W for all v ∈ V , is an
F-vector space.

Proof.
(
Hom(V,W ),+,0

)
is an abelian group. Associativity and com-

mutativity of (point-wise!) addition follow from associativity and commuta-
tivity of vector addition in W ; addition of the constant-zero map 0 operates
trivially, whence this constant-zero map is the neutral element w.r.t. addi-
tion; for ϕ ∈ Hom(V,W ), the map −ϕ : V → W with v 7→ −ϕ(v) acts as an
inverse w.r.t. addition.

Point-wise scalar multiplication inherits associativity from associativity
of scalar multiplication in W ; the neutral element is 1 ∈ F.

Both distributivity laws follow from the corresponding laws in W . For
instance, let λ ∈ F, ϕ, ψ ∈ Hom(V,W ). Then, for any v ∈ V :

[λ(ϕ+ ψ)](v) =λ
(
[ϕ+ ψ](v)

)
=λ
(
ϕ(v) + ψ(v)

)
=λϕ(v) + λψ(v) = [λϕ](v) + [λψ](v).

Hence λ(ϕ+ ψ) = λϕ+ λψ in Hom(V,W ).
2
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Exercise 3.2.1 Let (b1, . . . ,bn) and (b′1, . . . ,b
′
m) be labelled bases for V

and W respectively. Show that the following maps ϕij are linear, pairwise
distinct and linearly independent, and that they span Hom(V,W ). For 1 6
i 6 m and 1 6 j 6 n, let

ϕij : V −→ W
v 7−→ λjb

′
i where v =

∑
j=1,...,n λjbj.

So these maps form a labelled basis for Hom(V,W ) and it follows that
dim(Hom(V,W )) = nm = dim(V )dim(W ).

We shall later see again, in a different manner, that the dimension of
Hom(V,W ) as an F-vector space, for finite-dimensional V,W , is the product
of the dimensions of V and W (compare Theorem 3.3.2).

3.2.2 The dual space

NB: some of the assertions of this section really rely on finite dimension. We
only consider finite-dimensional F-vector spaces for the whole section.

The dual space is a special case of a space Hom(V,W ), namely with
W = F = F1 the standard one-dimensional F-vector space.

Definition 3.2.3 For any F-vector space V , the F-vector space Hom(V,F),
with point-wise addition and scalar multiplication and constant-zero function
as null-vector, is called the dual space [Dualraum] of V . It is denoted V ∗ :=
Hom(V,F).

Exercise 3.2.2 Check that the vector space structure on Hom(V,F) (as a
special case of Hom(V,W )) is the same as if we consider Hom(V,F) as a
subspace of F(V,F) (the F-vector space of all F-valued functions on domain
V ). For this, firstly establish that Hom(V,F) ⊆ F(V,F) is a subspace, and
secondly that the operations it thus inherits from F(V,F) are the same as
those introduced in the context of Hom(V,W ) for W = F.

Example 3.2.4 Consider the left-hand side of a linear equation E : a1x1 +
· · ·+ anxn = b over Fn as a map from V = Fn to F:

ϕE : Fn −→ F
(x1, . . . , xn) 7−→ a1x1 + · · ·+ anxn.
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This is a linear map, and hence a member of (Fn)∗. Note that the solution
set of the associated homogeneous linear equation E∗ : a1x1 + · · ·+ anxn = 0
is the kernel of this map: S(E∗) = ker(ϕE).

Example 3.2.5 Consider V = Fn with standard basis B = (e1, . . . , en).
For i = 1, . . . , n, consider the linear map

ηi : Fn −→ F
(λ1, . . . , λn) 7−→ λi.

ηi picks out the i-th component of every vector in Fn.
Clearly ηi ∈ (Fn)∗, and in fact B∗ := (η1, . . . , ηn) forms a basis of (Fn)∗.

B∗ is called the dual basis of V ∗ = (Fn)∗ associated with the given basis
B = (e1, . . . , en) of V = Fn.

For linear independence, let η =
∑

i λiηi = 0 be a linear combination of
the constant-zero function, which has value 0 ∈ F on all of Fn. Apply η to
the basis vector ej to see that

0 = η(ej) =
∑
i

λiηi(ej) = λj.

Therefore λj = 0 for all j follows, whence B∗ consists of linearly independent
vectors.

To see that (Fn)∗ = span(B∗), let ϕ : Fn → F be linear. By Proposi-
tion 3.1.8 we know that ϕ is uniquely determined by its values on the basis
vectors e1, . . . , en. In order to represent ϕ as a linear combination of the ηi,
we just need to find coefficients λi such that the linear combination

∑
i λiηi

returns the same values as ϕ on each ej for j = 1, . . . , n. Then ϕ =
∑

i λiηi
follows by linearity alone.

As (
∑

i λiηi)(ej) = λj we merely need to put λj := ϕ(ej) for j = 1, . . . , n.
So, for any ϕ ∈ (Fn)∗:

ϕ =
∑
i

ϕ(ei) ηi.

These considerations extend to arbitrary labelled bases B = (b1, . . . ,bn)
of any n-dimensional space V . The corresponding linear maps, that form
the dual basis B∗ = (b∗1, . . . ,b

∗
n) of V ∗ associated with the given basis B =

(b1, . . . ,bn) of V , are the maps

b∗i : V −→ F
v 7−→ λi where v =

∑
i=1,...,n λibi.
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Observation 3.2.6 Let V be finite-dimensional. Then every labelled basis
of V induces a dual basis of V ∗. For each basis vector b in the basis of V
the dual basis has a basis vector b∗ which maps b to 1 ∈ F and all other
basis vectors to 0 ∈ F. As these bases have the same number of vectors,
dim(V ) = dim(V ∗).

3.3 Linear maps and matrices

3.3.1 Matrix representation of linear maps

In this section we investigate the connection between m× n matrices over F

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 ∈ F(m,n)
and linear maps from some n-dimensional F-vector space V to some m-
dimensional F-vector space W .

Standard spaces with standard bases

Think of the standard spaces V = Fn and W = Fm of respective dimensions.
We may read the above matrix as consisting of a sequence of n many column
vectors

aj =


a1j
a2j
...
amj

 ∈ Fm,
inducing the linear map

ϕA : Fn −→ Fm
(x1, . . . , xn) 7−→ x1a1 + x2a2 + · · ·+ xnan =

∑n
j=1 xjaj.

In other words, ϕA is the vector space homomorphism from Fn to Fm that
is determined by the stipulation that

ϕA(ej) := aj,
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where

ej = (0, . . . , 0, 1
j
, 0, . . . , 0) ∈ Fn

is the j-th basis vector of the standard labelled basis for Fn, with entries
0 in slots i 6= j and entry 1 in position j. That this stipulation precisely
determines a unique linear map ϕA was shown in Proposition 3.1.8.

Looking at the computation of image vectors under this map, it is con-
venient now to think of the entries of v ∈ Fn and its image ϕ(v) ∈ Fm as
column vectors [Spaltenvektoren].

If v = (x1, . . . , xn), we obtain the entries yi in ϕ(v) = (y1, . . . , ym) ac-
cording to [compare multiplication, Definition 3.3.3]

y1
...
yi
...
ym

 =



∑n
j=1 a1jxj

...∑n
j=1 aijxj

...∑n
j=1 amjxj

 =


a11 a12 · · · a1n
...

...
...

ai1 ai2 → ain
...

...
...

am1 am2 · · · amn




x1
x2

↓

xn


Example 3.3.1 Consider V = W = R2 and a 2× 2 matrix

A =

(
a11 a12
a21 a22

)
∈ R(2,2).

In terms of the standard basis (e1, e2) =
(
(1, 0), (0, 1)

)
, A describes the

map

ϕ : R2 −→ R2

(x, y) 7−→ x

(
a11
a21

)
+ y

(
a12
a22

)
=

(
a11x+ a12y
a21x+ a22y

)
=

(
a11 a12
a21 a22

)(
x
y

)
.

For instance, we have the following familiar linear transformations of the
real plane, represented by the following matrices in R(2,2) in terms of the
standard basis (e1, e2):

(i) the identity idR2 , represented by the unit matrix : E2 :=

(
1 0
0 1

)
.

(ii) scalar transformation with factor λ:

(
λ 0
0 λ

)
= λE2.
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(iii) reflection in the line through 0 and (1, 1):

(
0 1
1 0

)
.

(iv) rotation through angle α:

(
cos(α) −sin(α)
sin(α) cos(α)

)
.

(v) a projection onto the line through 0 and (1, 1):

(
1/
√

2 1/
√

2

1/
√

2 1/
√

2

)
.

(vi) a shear transformation along the x-axis:

(
1 1
0 1

)
.

It is clear that any linear map ϕ : Fn → Fm, ϕ ∈ Hom(Fn,Fm), is rep-
resentable (with respect to the standard bases of these spaces) by a matrix
Aϕ ∈ F(m,n) in this fashion. We merely put as the j-th column vector of Aϕ
the image of the j-th basis vector ej ∈ V under ϕ:

ϕ(ej) =:


a1j
a2j
...
amj

 ∈ Fm.
The association between F(m,n) and Hom(V,W ) generalises to arbitrary

n- and m-dimensional F-vector spaces V and W and arbitrary choices of
labelled bases for them. This is discussed in the following section.

The matrix of a homomorphism w.r.t. arbitrary bases

Let V and W be finite-dimensional F-vector spaces. Fix labelled bases B =
(b1, . . . ,bn) for V , and B̂ = (b̂1, . . . , b̂m) for W .

Consider ϕ ∈ Hom(V,W ). The representation of ϕ with respect to the
chosen bases, as an m× n matrix A = [[ϕ]]B

B̂
is obtained as follows.

Let wj := ϕ(bj) and express wj in terms of the basis (b̂1, . . . , b̂m) as wj =∑m
i=1 aijb̂i. These coefficients a1j, . . . , amj are therefore determined according

to (a1j, . . . , amj) = [[wj]]B̂. We now take these coefficients a1j, . . . , amj to form
the j-th column vector in the matrix A = [[ϕ]]B

B̂
= (aij)16i6m;16j6n ∈ F(m,n).

[[ϕ(bj)]]B̂ = (aij)16i6m −→

 a11 · · · a1j · · · a1n
... ↓ ...
am1 · · · amj · · · amn


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Then, for any v ∈ V with representation (λ1, . . . λn) in terms of the basis
B = (b1, . . . ,bn), i.e, with (λ1, . . . λn) = [[v]]B,

v =
n∑
j=1

λjbj

implies that its image under ϕ is

ϕ(v) =
n∑
j=1

λjϕ(bj) =
m∑
i=1

( n∑
j=1

aijλj

)
b̂i.

This means that the representation (µ1, . . . , µm) of ϕ(v) in terms of the basis
B̂ = (b̂1, . . . , b̂m) is

[[ϕ(v)]]B̂ = (µ1, . . . , µm) where µi =
n∑
j=1

aijλj.

In terms of just the coefficients in the respective bases B and B̂, we get
the same relationship as if we interpreted everything over Fn and Fm with
the standard bases. For v =

∑n
j=1 λjbj as above, we obtain the coefficients

µi of ϕ(v) in ϕ(v) =
∑m

i=1 µib̂i according to
µ1
...
µi
...
µm

 =



∑n
j=1 a1jλj

...∑n
j=1 aijλj

...∑n
j=1 amjλj

 =


a11 a12 · · · a1n
...

...
...

ai1 ai2 → ain
...

...
...

am1 am2 · · · amn




λ1
λ2

↓

λn


Diagrammatically, the following clarifies the view of ϕ involved in this

representation. Recall that, for instance for V , since B = (b1, . . . ,bn) is a
basis, the maps

[[·]]B : V −→ Fn
v 7−→ [[v]]B = (λ1, . . . , λn) if v =

∑n
j=1 λjbj

and its inverse
ξB : Fn −→ V

(λ1, . . . , λn) 7−→
∑n

j=1 λjbj
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are vector space isomorphisms. Similarly, for the basis B̂ = (b̂1, . . . , b̂m)
of W we have a corresponding isomorphism [[·]]B̂ : W → Fm and its inverse
ξB̂ : Fm → W . Then the relationship between the map described by A =
[[ϕ]]B

B̂
on the coefficients and the map ϕ itself is indicated in the following

commuting diagram:

V

[[·]]B

��

ϕ // W

[[·]]B̂

��

Fn

ξB

OO

A = [[ϕ]]B
B̂ // Fm

ξB̂

OO

Note that the representation of ϕ by A = [[ϕ]]B
B̂
∈ F(m,n) crucially

depends on the chosen labelled bases in both the domain V and the
range W of ϕ. In general the same homomorphism ϕ is represented
by entirely different matrices, if different bases are used.

See section 3.3.3 in particular. Some of the key ideas in linear algebra
revolve around the following:

• to separate essential features of the underlying homomorphisms from
the purely incidental features of representational matrices.

• to isolate those properties of the representational matrices that cap-
ture properties of the underlying homomorphisms rather than being
incidental to the choice of bases.

Exercise 3.3.1 Let dim(V ) = n.

(i) Show that the identity transformation idV : V → V is represented by
the unit matrix En whenever the same labelled basis (b1, . . . ,bn) is
chosen for V both as domain and as range. In other words, [[idV ]]BB = En
for every B.

(ii) Precisely which homomorphisms ϕ : V → W can have the unit matrix
En as their representation for suitable choices of bases (b1, . . . ,bn) of
V and (b̂1, . . . , b̂n) of W? In other words, what does [[ϕ]]B

B̂
= En for

some choice of B and B̂ imply about ϕ?
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Converse to the above passage from homomorphisms to matrices, we may
interpret any matrix A ∈ F(m,n) as a representation of a homomorphism
ϕ ∈ Hom(V,W ), w.r.t. any choice of labelled bases in V and W .

Let B = (b1, . . . ,bn) a labelled basis for V , B̂ = (b̂1, . . . , b̂m) a labelled
basis for W . Starting now from an arbitrary m×n matrix over F, A ∈ F(m,n),
we find that there is a unique homomorphism ϕ : V → W for which [[ϕ]]B

B̂
= A:

ϕ = ϕBB̂A : V −→ W∑n
j=1 λjbj 7−→

∑m
i=1

∑n
j=1 aijλjb̂i.

Note that ϕ is uniquely determined by linearity and the stipulation that
it maps bj to wj :=

∑m
i=1 aijb̂i for j = 1, . . . , n. Note also that again the

j-th column in matrix A is taken to consist of the coefficients of the image
ϕ(bj) of the j-th basis vector of V , expressed as a linear combination over
the chosen basis of W .

A similar diagram describes the relationship; but we now think of the
transformation matrix A as given, and read it as representing a homomor-
phism ϕ = ϕBB̂A for which [[ϕ]]B

B̂
= A:

Fn

ξB

��

A // Fm

ξB̂

��

V

[[·]]B

OO

ϕ = ϕBB̂
A // W

[[·]]B̂

OO

It is clear that these associations between Hom(V,W ) and F(m,n),

F(m,n) −→ Hom(V,W )

A 7−→ ϕBB̂A
and

Hom(V,W ) −→ F(m,n)
ϕ 7−→ [[ϕ]]B

B̂

are inverses of each other. They are also compatible with the linear struc-
ture of Hom(V,W ) and F(m,n) as F-vector spaces, and hence constitute an
isomorphism between these two vector spaces.
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In both directions we work with a fixed choice of labelled bases B and B̂
for V and W . Different choices of bases would yield different isomorphisms.

Theorem 3.3.2 Let V,W be finite-dimensional F-vector spaces of dimen-
sion n and m, respectively. Fix labelled bases B = (b1, . . . ,bn) and B̂ =
(b̂1, . . . , b̂m) of V and W , respectively. Then the F-vector spaces

• F(m,n), the F-vector space of m× n matrices over F, and

• Hom(V,W ), the F-vector space of homomorphisms from V to W ,

are isomorphic via the association between ϕ ∈ Hom(V,W ) with its repre-

sentation [[ϕ]]B
B̂
∈ F(m,n) and (conversely) between A ∈ F(m,n) and ϕBB̂A ∈

Hom(V,W ). It follows that dim(Hom(V,W )) = dim(F(m,n)) = mn.

Fn

ξB

��

A= [[ϕ]]B
B̂ // Fm

ξB̂

��

V

[[·]]B

OO

ϕ = ϕBB̂
A // W

[[·]]B̂

OO

Exercise 3.3.2 Find representations of some of the sample endomorphisms
ϕ : R2 → R2 from Example 3.3.1 above w.r.t. other labelled bases. In par-
ticular, for (iii) and (v), a basis which uses a basis vector in the direction of
the distinguished line of fixed points of these maps would be of interest.

Composition and matrix multiplication

The association between homomorphisms and matrices – based on distin-
guished labelled bases in the constituent vector spaces – tells us that any
operation on homomorphisms has a natural counterpart in an operation on
matrices.

The most important operation on maps is that of composition; translated
into the language of the associated matrices it gives rise to the operation of
matrix multiplication.

Consider three finite-dimensional F-vector spaces, U, V,W , dim(V ) = n,
dim(U) = `, dim(W ) = m, and homomorphisms ϕ ∈ Hom(V, U) and ψ ∈
Hom(U,W ).
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•
vwvutpqrs •

ϕ(v)wvutpqrs •
ψ(ϕ(v))wvutpqrs

V U W

B B′ B̂

Fn F` Fm

''

ψ ◦ ϕ

99

[[ψ ◦ ϕ]]B
B̂

[[ϕ]]B
B′ //

[[ψ]]B
′

B̂ //

� ϕ // � ψ //

ϕ // ψ //ψ //

It is easily checked that the composition ψ ◦ ϕ : V → W is linear, and
hence ψ ◦ ϕ ∈ Hom(V,W ).

Fix labelled bases


B = (b1, . . . ,bn) for V ;
B′ = (b′1, . . . ,b

′
`) for U ;

B̂ = (b̂1, . . . , b̂m) for W.

Let, w.r.t. these bases


G := [[ϕ]]BB′ ∈F(`,n)
H := [[ψ]]B

′

B̂
∈F(m,`)

C := [[ψ ◦ ϕ]]B
B̂
∈F(m,n)

Then the coefficients of C are uniquely determined by those of G and H,
according to:

(ψ ◦ ϕ)(bj) =
∑m

i=1 cijb̂i

= ψ
(
ϕ(bj)

)
= ψ

(∑`
k=1 gkjb

′
k

)
[G = [[ϕ]]BB′ ]

=
∑`

k=1 gkjψ(b′k)

=
∑`

k=1 gkj
∑m

i=1 hikb̂i [H = [[ψ]]B
′

B̂
]

=
∑m

i=1

(∑`
k=1 hikgkj

)
b̂i.
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This means that for 1 6 i 6 m and 1 6 j 6 n:

cij =
∑̀
k=1

hikgkj.

The summation that produces the coefficient in the i-th row and j-th
column of C extends over the consecutive products of coefficients in the i-th
row of H and the j-th column of G, as indicated in the diagram:

c11 · · · c1j · · · c1n
...

...
...

ci1 · · · cij · · · cin
...

...
...

cm1 · · · cmj · · · cmn


⇑


h11 h12 · · · h1`
...

...
...

hi1 hi2 → hi`

...
...

...
hm1 hm2 · · · hm`





g11 · · · g1j · · · g1n
g21 · · · g2j · · · g2n

... ↓ ...

g`1 · · · g`j · · · g`n


Definition 3.3.3 The product of matrices [Matrizenprodukt] is defined as
follows. Let n,m, ` > 1.

Let A ∈ F(m,`), A = (aik)16i6m;16k6`, with m rows and ` columns;
Let B ∈ F(`,n), B = (bkj)16k6`;16j6n, with ` rows and n columns.

Then the matrix product AB is the matrix C ∈ F(m,n), C = (cij)16i6m;16j6n,
with m rows and n columns, whose entries are

cij =
∑̀
k=1

aikbkj.

Note that the number of columns of A must be the same as the number
of rows in B. These conditions precisely match the requirements that A and
B represent homomorphisms ϕA and ϕB that can be composed in the order
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ϕA ◦ ϕB. The resulting product matrix AB has the format to represent the
homomorphism ϕA ◦ ϕB, with as many rows as A and as many columns as
B.

We also note that this definition of matrix multiplication covers the way
in which we obtained coefficients of image vectors ϕ(v) from coefficients of
v and the representation of ϕ by a matrix A = [[ϕ]]B

B̂
w.r.t. bases B and B̂:


µ1
...
µi
...
µm

 =


a11 a12 · · · a1n
...

...
...

ai1 ai2 → ain
...

...
...

am1 am2 · · · amn




λ1
λ2

↓

λn


is just matrix multiplication between the m × n matrix A and the n × 1
matrix (i.e., column vector from Fn) which consists of the coefficients [[v]]B =
(λ1, . . . , λn) and produces the coefficients [[ϕ(v)]]B̂ = (µ1, . . . , µm) as an m×1
matrix (i.e., column vector from Fm).

In the above analysis of the composition of homomorphisms we have
shown the following.

Proposition 3.3.4 If homomorphisms ϕ : V → U and ψ : U → W are rep-
resented w.r.t. chosen labelled bases B, B′, B̂ of each of these spaces by
matrices Aϕ = [[ϕ]]BB′ and Aψ = [[ψ]]B

′

B̂
, then the composition ψ ◦ϕ : V → W is

represented, w.r.t. bases B and B̂ by the product matrix Aψ◦ϕ = AψAϕ, i.e.,

[[ψ ◦ ϕ]]B
B̂

= [[ψ]]B
′

B̂
· [[ϕ]]BB′ .

Definition 3.3.5 The n-dimensional unit matrix [Einheitsmatrix] over F is
the matrix En ∈ F(n,n) with entries aii = 1 and aij = 0 for 1 6 i 6= j 6 n.

We collect some properties of matrix multiplication, also in relation to the
vector space operations on F(m,n) (or Hom(V,W )). Recall that the m×n null
matrix (the null vector in F(m,n)) is the matrix with entries 0 ∈ F throughout.

Lemma 3.3.6 Whenever the matrices involved are such that the products
are defined (we put superscripts to indicate the space F(m,n) they come from),
then
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(i) matrix multiplication is associative:

A(m,n)(B(n,k)C(k,`)) = (A(m,n)B(n,k))C(k,`).

(ii) matrix multiplication is distributive w.r.t. to addition:

A(m,n)(B(n,k) + C(n,k)) = A(m,n)B(n,k) + A(m,n)C(n,k).

(iii) the null matrix 0(n,m) annihilates any matrix: 0(n,m)A(m,k) = 0(n,k) and
B(k,n)0(n,m) = 0(k,m).

(iv) The n × n unit matrix En acts as a neutral element for matrix multi-
plication: A(m,n)En = A(m,n) and EnB

(n,k) = B(n,k).

Proof. All assertions can be checked arithmetically. However, they also
follow directly from corresponding properties of the composition of homo-
morphisms, with the use of Proposition 3.3.4.

E.g., (i) follows from associativity of the composition of maps.
(ii) reflects a corresponding distributivity of composition over addition of

homomorphisms. One simply checks that

ψ ◦ (ϕ1 + ϕ2) = (ψ ◦ ϕ1) + (ψ ◦ ϕ2),

for any ψ ∈ Hom(Fn,Fm) and ϕi ∈ Hom(Fk,Fn) say.
(iii) uses the fact that the null map executed before or after any other

homomorphism, results in the null map.
(iv) finally relies on the observation that the unit matrix En represents

the identity endomorphism idFn .
2

Example 3.3.7 Matrix multiplication is not commutative. In terms of ho-
momorphisms of R2, for instance, the composition of a rotation through angle
α = π/2 does not commute with the reflection in the line through (1, 1). The
two products of the corresponding matrices therefore must be different. In
fact, (

0 −1
1 0

)(
0 1
1 0

)
=

(
−1 0
0 1

)
(

0 1
1 0

)(
0 −1
1 0

)
=

(
1 0
0 −1

)
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Exercise 3.3.3 Compute the matrix products of the matrices representing
a rotation through angle α and a reflection in the line through 0 at an angle β
in terms of the standard basis (e1, e2) of R2, and determine for which values
of α and β these two matrices do commute.

Exercise 3.3.4 Over any field F, show that:

(a) the matrices A ∈ F(2,2) for which AB = BA for all B ∈ F(2,2) are
precisely the matrices λE2, for λ ∈ F.

(b) matrix multiplication is commutative on the subset of diagonal matri-
ces in F(n,n). These are the matrices A = (aij)16i,j6n with aij = 0 for
all i 6= j.

Hom(V, V ) and F(n,n) as rings

Let V be an n-dimensional F-vector space and fix a labelled basis B of V .
Then the matrices A = [[ϕ]]BB associated with endomorphisms ϕ ∈ Hom(V, V ),
ϕ : V → V , correspond to the space of all n× n square matrices A ∈ F(n,n).

With matrix addition and multiplication, F(n,n) forms a ring(
F(n,n),+, ·,0, En

)
.

Via the bijective correspondence with Hom(V, V ), A 7→ ϕBBA , this struc-
ture is isomorphic to (

Hom(V, V ),+, ◦,0, idV
)
,

the ring of endomorphisms of V [Endomorphismenring]. 4

Theorem 3.3.8 For any n > 1 and for any n-dimensional F-vector space
V , the rings

•
(
F(n,n),+, ·,0, En

)
•
(
Hom(V, V ),+, ◦,0, idV

)
are isomorphic. For every choice of a labelled basis B for V , the association
between endomorphisms and their matrix representations w.r.t. B induces an
isomorphism between these two rings.

4Note that 0 ∈ F(n,n) is the null matrix (all entries equal 0 ∈ F) while 0 ∈ Hom(V, V )
is the null endomorphism, i.e., the constant map that sends all v ∈ V to the null vector
0 ∈ V .
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3.3.2 Invertible homomorphisms and regular matrices

Let ϕ ∈ Hom(V,W ), V,W finite-dimensional F-vector spaces.

We know from our general considerations in section 3.1.2 that the homo-
morphism ϕ : V → W is injective iff ker(ϕ) = {0}. Moreover, ϕ is surjective
iff image(ϕ) = W iff dim(image(ϕ)) = dim(W ).

From the dimension formula, ϕ is bijective (an isomorphism) iff ker(ϕ) =
{0} and dim(V ) = dim(W ).

Invertible homomorphisms

A homomorphism ϕ ∈ Hom(V,W ), ϕ : V → W , is invertible [invertierbar] iff
it has an inverse ϕ−1 : W → V such that

ϕ ◦ ϕ−1 = idW and ϕ−1 ◦ ϕ = idV .

It is easy to show that the inverse ϕ−1 of a linear map ϕ is necessarily
linear. So ϕ−1 ∈ Hom(W,V ).

As the existence of an invertible homomorphism in Hom(V,W ) implies
that V and W are isomorphic, one may essentially restrict attention to the
case in which W = V and study invertible endomorphisms (i.e., automor-
phisms) of V .

Definition 3.3.9 Let V be an F-vector space. Aut(V ) stands for the subset
of Hom(V, V ) consisting of the automorphisms of V .

Note that the null endomorphism, which is the null element of the endo-
morphism ring Hom(V, V ), is not present in Aut(V ). Aut(V ) is not a ring.
On the other hand, invertibility means that the multiplicative operation ◦
(composition) has inverses, and Aut(V ) forms a group with ◦ and neutral
element idV . (5) The following is easily proved by checking the axioms.

Theorem 3.3.10
(
Aut(V ), ◦, idV

)
is a group.

5Far more generally, the automorphisms (i.e., self-isomorphisms or symmetries) of any
mathematical object form a group, with composition as the group operation and with the
identity map as the trivial symmetry acting as the neutral element.
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Regular matrices and GLn(F)

Via the association between Hom(V, V ) with F(n,n) for n = dim(V ) – based on
any choice of a labelled basis for V – we obtain a subset of F(n,n) corresponding
to Aut(V ). This subset consists of those n× n matrices over F that possess
an inverse w.r.t. matrix multiplication. With Theorem 3.3.10 and via the
isomorphism asserted in Theorem 3.3.8 we already know that this subset
forms a group.

Definition 3.3.11 A matrix A ∈ F(n,n) is called regular [regulär] iff it pos-
sesses an inverse A−1 with respect to matrix multiplication, i.e., if there is
an A−1 ∈ F(n,n) such that

AA−1 = A−1A = En.

GLn(F) ⊆ F(n,n) stands for the set of regular n× n matrices over F.

Definition 3.3.12 The general linear group [allgemeine lineare Gruppe] is
the group

(
GLn(F), ·, En

)
consisting of the regular n×n matrices over F, with

matrix multiplication as the group operation and with the n-dimensional unit
matrix En as its neutral element.

Recall that for n = 0 we let F0 = {0} be the F-vector space consisting
of just the null vector. Matching that, we let Aut(F0) consist of just the
identity (mapping 0 to itself) and GL0(F) the group consisting of just its
neutral element.

Exercise 3.3.5 Check that the following are equivalent for A ∈ F(n,n):
(i) there is a B ∈ F(n,n) such that AB = En.

(ii) there is a B ∈ F(n,n) such that BA = En.

Hint: work in Aut(Fn).

Exercise 3.3.6 Let A,B ∈ GLn(F). Show that (AB)−1 = B−1A−1. [This
rule follows from the group axioms, but here you may also work in Aut(Fn).]

Exercise 3.3.7 Show that A =

(
a b
c d

)
∈ F(2,2) is invertible iff ad− bc 6= 0.

[Hint: argue via endomorphisms and consider linear independence of (a, c)
and (b, d).] Can you give explicit formulae for the entries in A−1?

Exercise 3.3.8 What is GL1(F) ?

We shall return to the problem of finding the inverse of a matrix in the
next chapter.
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3.3.3 Change of basis transformations

A particular point of interest in the choice of bases for the representation
of vectors and homomorphisms is the effect of basis transformations [Basis-
transformationen]: the effect of switching from one basis of V to another on
these representations.

Change of basis: coefficients of vectors

Let B = (b1, . . . ,bn) and B′ = (b′1, . . . ,b
′
n) be labelled bases of V . Any

vector v ∈ V has a unique representation with respect to either basis.

v =
∑n

i λibi =
∑

i λ
′
ib
′
i where

(λ1, . . . , λn) = [[v]]B and (λ′1, . . . , λ
′
n) = [[v]]B′ .

What is the relationship between [[v]]B and [[v]]B′? We want to capture
the transformation [[v]]B 7→ [[v]]B′ as a transformation in Fn. We know that
the maps

[[·]]B : V −→ Fn
v 7−→ [[v]]B

with inverse ξB : Fn −→ V
(λ1, . . . , λn) 7−→

∑
i λibi

and

[[·]]B′ : V −→ Fn
v 7−→ [[v]]B′

with inverse ξB′ : Fn −→ V
(λ1, . . . , λn) 7−→

∑
i λib

′
i,

are vector space isomorphisms between V and Fn. The desired transforma-
tion from coefficients λi to coefficients λ′i is governed by the requirement
that

(λ′1, . . . , λ
′
n) = [[ξB(λ1, . . . , λn)]]B′ .

Similarly for the converse transformation from coefficients λ′i to coefficients
λi, the requirement is (λ1, . . . , λn) = [[ξB′(λ

′
1, . . . , λ

′
n)]]B.

The transformations therefore are obtained as compositions [[·]]B′ ◦ ξB
(from B to B′) and [[·]]B ◦ ξB′ (from B′ to B), respectively. Their matrix rep-
resentations, C (for the transformation from B to B′) and C ′ = C−1 (for the
transformation from B′ to B), are best read off from the following diagram,
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as representations of the identity map on V in corresponding (mixed) bases:

V

[[·]]B

��

idV //
V

[[·]]B′

��

idV
oo

Fn

ξB

OO

C = [[idV ]]B
B′ // Fn

ξB′

OO

C′ = [[idV ]]B
′

B

oo

The transformation that maps (λ1, . . . , λn) to (λ′1, . . . , λ
′
n) is thus

λ′i =
∑
j

cijλj,

or λ
′
1
...
λ′n

 =

 c11 · · · c1n
...

...
cn1 · · · cnn


λ1...
λn

 ,

where the j-th column of the matrix C consists just of the coefficients of bj
w.r.t. basis B′, i.e.,

(c1j, . . . , cnj) = [[bj]]B′ .

Clearly, CC ′ = C ′C = En, and C ′ = C−1 is the inverse of C w.r.t. matrix
multiplication. This can also be inferred from compositionality according to
[[idV ]]B

′
B [[idV ]]BB′ = [[idV ◦ idV ]]BB = [[idV ]]BB = En.

Exercise 3.3.9 Determine the coefficients cij of the transformation matrix
C = (cij) ∈ F(n,n) directly from the requirement that

v =
∑
j

λjbj =
∑
j

∑
i

λjcijb
′
i.

Change of basis: matrices of endomorphisms

What is the effect of a change of basis for V on the representation of a given
endomorphism ϕ ∈ Hom(V, V )?

We saw above how the change of basis from B = (b1, . . . ,bn) to B′ =
(b′1, . . . ,b

′
n) is expressed by the matrix C = [[idV ]]BB′ . This matrix C and its

inverse C−1 = C ′ = [[idV ]]B
′

B are used here again.
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Let ϕ ∈ Hom(V, V ) and consider its representation by matrices A = [[ϕ]]BB
w.r.t. B and A′ = [[ϕ]]B

′

B′ w.r.t. B′.
From compositionality we find that

[[idV ]]BB′ [[ϕ]]BB[[idV ]]B
′

B = [[idV ◦ ϕ ◦ idV ]]B
′

B′ = [[ϕ]]B
′

B′ ,

i.e., A′ = [[idV ]]BB′A[[idV ]]B
′

B = CAC ′ = CAC−1.

Fn

C

��

A=[[ϕ]]BB //
ξB

&&NNNNNNNNNNNNN Fn

C

��

ξB

xxppppppppppppp

V
ϕ //

[[·]]B

ffNNNNNNNNNNNNN

idV
��

V
[[·]]B

88ppppppppppppp

idV
��

V

OO

ϕ //
[[·]]B′

xxppppppppppppp V

OO

[[·]]B′

&&NNNNNNNNNNNNN

Fn

C′

OO

A′=[[ϕ]]B
′

B′ //
ξB′

88ppppppppppppp Fn

C′

OO

ξB′

ffNNNNNNNNNNNNN

B

_______ _______

B′

Checking the same relationship by hand, consider v =
∑

j λjbj =
∑

j λ
′
jb
′
j

and its image under ϕ, ϕ(v) =
∑

i µibi =
∑

i µ
′
ib
′
i.

Note that both λj and λ′j, as well as the µi and µ′i are related in the above
manner by C and C ′ = C−1. On the other hand, the µi are related to the λj
via A, while the µ′i are related to the λ′j via A′. Together these relationships
fully determine A′ in terms of A and vice versa. We find that∑

j a
′
ijλ
′
j = µ′i [A′ = [[ϕ]]B

′

B′ ]

=
∑

k cikµk [µ
C7−→ µ′]

=
∑

k cik

(∑
` ak`λ`

)
[A = [[ϕ]]BB]

=
∑

k cik

(∑
` ak`

(∑
j c
′
`jλ
′
j

))
. [λ′

C′7−→ λ]

=
∑

j

(
CAC−1

)
ij
λ′j.

Hence we find again that

A′ = CAC−1.

This relationship between different matrix representations of the same endo-
morphism is a central notion of matrix calculus.
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Definition 3.3.13 Two matrices A,B ∈ F(n,n) are similar [ähnlich], A ∼ B,
iff

A = CBC−1 for some regular C with inverse C−1.

Lemma 3.3.14 Similarity is an equivalence relation on the set F(n,n) of all
n× n matrices over F.

Proof. We need to show that∼ is reflexive, symmetric and transitive:

(i) reflexivity: A ∼ A as A = EnAEn (and En = (En)−1).

(ii) symmetry: A ∼ B implies B ∼ A, as A = CBC−1 iff B = C−1AC
(and C = (C−1)−1).

(iii) transitivity: A ∼ B and B ∼ D implies A ∼ D. Let A = C1B(C1)
−1

and B = C2D(C2)
−1; then A = C1C2D(C2)

−1(C1)
−1 = CDC−1 for

C := C1C2 (note that (C1C2)
−1 = (C2)

−1(C1)
−1).

2

Lemma 3.3.15 Two matrices A,A′ ∈ F(n,n) are similar iff they are the rep-
resentations of the same endomorphism of Fn with respect to some choice
of two labelled bases of Fn. In other words, the equivalence classes w.r.t.
similarity are in a bijective correspondence with Hom(Fn,Fn).

Proof. Let A = CA′C−1, i.e., A′ = C−1AC. Let B = (e1, . . . , en) be
the standard basis of Fn and choose ϕ ∈ Hom(Fn,Fn) such that [[ϕ]]BB = A
(ϕ = ϕA is just multiplication with A).

Let C = (cij)16i,j6n. We observe that C = [[id]]B
′

B if we letB′ = (b′1, . . . ,b
′
n)

consist of the column vectors of C:

b′j :=
∑
i

cijei =

c1j...
cnj


Then B′ = (b′1, . . . ,b

′
n) is another labelled basis of Fn (the columns of the

regular matrix C always are) and A′ is the matrix representation of ϕ w.r.t.
this new basis B′:

[[ϕ]]B
′

B′ = [[id]]BB′ [[ϕ]]BB[[id]]B
′

B = C−1AC.

Conversely, we saw above that whenever A and A′ represent the same
endomorphism w.r.t. to any two bases B and B′, then A and A′ are similar.

2



LA I — Martin Otto 2013 109

3.3.4 Ranks

We consider the matrix

A =


a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

am1 · · · amj · · · amn

 ∈ F(m,n)

with row vectors ri =
(
ai1, . . . , ain

)
∈ Fn for i = 1, . . . ,m

and column vectors cj =

a1j
...
amj

 ∈ Fm for j = 1, . . . , n.

With A we associate the following ranks:

• row-rank [Zeilenrang], the dimension of the span of the row vectors of
A, r-rank(A) := dim

(
span(r1, . . . , rm)

)
.

• column-rank [Spaltenrang], the dimension of the span of the column
vectors of A, c-rank(A) := dim

(
span(c1, . . . , cn)

)
.

We shall later see that always r-rank(A) = c-rank(A) – and this number
will correspondingly be called the rank of A, rank(A).

A connection between column-rank and homomorphisms represented by
A is apparent. If we take A to represent ϕA : Fn → Fm w.r.t. the standard
bases in these spaces:

ϕA : Fn −→ Fm

(λ1, . . . , λn) 7−→ A ·

λ1...
λn

 = λ1c1 + · · ·+ λncn =
∑n

j=1 λjcj,

then image(ϕ) = span(c1, . . . , cn) and therefore

c-rank(A) = dim(image(ϕA)).



110 Linear Algebra I — Martin Otto 2013

Definition 3.3.16 Let ϕ ∈ Hom(V,W ), V and W finite-dimensional F-
vector spaces. The rank of ϕ is defined to be the dimension of the image of
ϕ [which is a subspace of W ]: rank(ϕ) := dim(image(ϕ)).

The above therefore says the following:

Lemma 3.3.17 c-rank(A) = rank(ϕA).

Lemma 3.3.18 For A ∈ F(n,n): c-rank(A) = n iff A is regular.

Proof. Let c-rank(A) = n. Then ϕA : Fn → Fn is surjective, and hence
(by the dimension formula) also injective, and thus an automorphism. There-
fore, A is regular.

Conversely, if A is regular, then ϕA ∈ Aut(Fn) has image Fn, whence
c-rank(A) = dim(image(ϕA)) = n.

2

Lemma 3.3.19 If C ∈ F(m,m) is regular then

(i) c-rank(CA) = c-rank(A) for any A ∈ F(m,n).
(ii) c-rank(AC) = c-rank(A) for any A ∈ F(n,m).

Proof. As ϕC , the endomorphism of Fm represented by C w.r.t. the stan-
dard basis, is an automorphism,

(i) dim(image(ϕA)) = dim(image(ϕC ◦ ϕA)).

(ii) dim(image(ϕA)) = dim(image(ϕA ◦ ϕC)).

The claims about the column-ranks follow with Lemma 3.3.17.
2

Lemma 3.3.20 Any application of the row transformations as considered in
the Gauß-Jordan procedure leaves the row-rank invariant. Let A′ be obtained
from A by one of the following

(T1) exchanging two rows.

(T2) replacing some row ri by λri for a scalar λ 6= 0.

(T3) replacing some row ri by ri + λrj for some scalar λ and some j 6= i.

Then r-rank(A′) = r-rank(A).

Proof. For (T1) the claim is obvious.
For (T2) and (T3) compare Lemma 2.4.4.

2
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The following will therefore allow us to determine the row-rank of a matrix
quite easily, via Gauß-Jordan. Recall that a sequence of applications of the
above operations will transform any matrix into a matrix in echelon (upper
triangle) form.

Lemma 3.3.21 Let A ∈ F(m,n) be in echelon form with r rows that have
non-zero entries, i.e., r1, . . . , rr 6= 0 and rr+1 = · · · = rm = 0. Then
r-rank(A) = c-rank(A) = r.

Proof. Consider row-rank first. Let for i = 1, . . . , r:

ri = (0, . . . , 0, aiji , . . . , ain)

with aiji 6= 0 the first non-zero component in row i, and such that 1 6 j1 <
j2 < · · · < jr 6 n (echelon form).

Clearly the ri for i = 1, . . . , r are pairwise distinct. It suffices to show
that they form a linearly independent set of r vectors.

Now if
∑

i λiri = 0, then we find for i = 1, . . . , r in this order that λi = 0.
For i = 1: since r1 is the only vector among the ri that has a non-zero

entry in component j1, namely a1j1 6= 0, we look at the j1-component of the
equation

∑
i λiri = 0 and find that λ1a1j1 = 0. This implies that λ1 = 0.

Inductively, suppose that λ1 = · · · = λi−1 = 0 is already established.
Looking at the ji-th component in the equation

∑
i λiri = 0, we see that the

only contribution is λiaiji . And as aiji 6= 0, λiaiji = 0 implies that λi = 0 as
well.

For column rank, we show that the column vectors cj1 , . . . , cjr are distinct
and linearly independent. The argument is entirely similar to the above.

2

This does not yet give us the desired equality between row-rank and
column-rank for all matrices. We so far established this equality for matrices
in echelon form only. The equality follows, however, if we can show that the
transformations (T1-3) that transform any A into echelon form also preserve
column rank.

Lemma 3.3.22 Any application of the row transformations in the Gauß-
Jordan procedure leaves the column-rank invariant. If A′ is obtained from A
by application of one of (T1), (T2), (T3), then c-rank(A′) = c-rank(A).
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Proof. We find regular matrices C ∈ F(m,m) such that A′ = CA. Then
the claim follows with Lemma 3.3.19 (i).

(T1): to exchange rows i and j use C with row vectors u1, . . . ,um ∈ Fm
where

uk =


ek for k 6= i, j
ei for k = j
ej for k = i

Check that this C operates as desired via A 7→ A′ := CA and that C is
regular.

(T2): to replace row ri by λri, use C with row vectors u1, . . . ,um ∈ Fm
where

uk =

{
ek for k 6= i
λei for k = i

Check that this C operates as desired via A 7→ A′ := CA and that C is
regular if λ 6= 0.

(T3): to replace row ri by ri + λrj where j 6= i, use C with row vectors
u1, . . . ,um ∈ Fm where

uk =

{
ek for k 6= i
ei + λej for k = i

Check that this C operates as desired via A 7→ A′ := CA and that C is
regular.

2

Corollary 3.3.23 For any A ∈ F(m,n): c-rank(A) = r-rank(A) = rank(ϕA).

Proof. We may apply a sequence of transformation steps (T1-3) to put
A into echelon form. These steps do neither alter row-rank nor column-rank,
by Lemmas 3.3.20 and 3.3.22. For the resulting echelon matrix we know that
row-rank and column-rank are the same from Lemma 3.3.21. Agreement
with the rank of ϕA is clear from Lemma 3.3.17 .

2

Matrix inversion based on Gauß-Jordan

The regular transformation matrices provided in the proof of Lemma 3.3.22
can also be used to obtain the inverse of a regular matrix A by a method
based on Gauß-Jordan row transformations.
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Observe that any transformation of a regular matrix A = (aij) ∈ F(n,n)
into echelon form will result in a matrix A′ = (a′ij) with a′ij = 0 for all
1 6 j < i 6 n and a′ii 6= 0 for 1 6 i 6 n. (In terms of systems of linear
equations: all variables are pivot variables!)

From here, we may apply transformation steps (T2) to make all diagonal
entries equal to 1, and finally further transformation steps (T3) to turn all
off-diagonal entries to 0.

In other words, for every regular A there is a sequence of Gauß-Jordan
transformations that transforms A into En. Let C = Ck · · ·C1 be the prod-
uct of the transformation matrices that correspond to such a sequence of
transformations. Then

CA = En implies C = A−1.

Moreover, A−1 = C = Ck · · ·C1 = Ck · · ·C1En shows us that A−1 is the
result of performing on En the same sequence of row transformations that
transforms A into En.

Observation 3.3.24 Let A ∈ F(n,n) be regular, B := (A,En) ∈ F(n,2n) the
rectangular block matrix obtained by putting En to the right of A. Then there
is a sequence of Gauß-Jordan row transformations that transforms B into
B′ = (En, A

−1). Moreover, any sequence of Gauß-Jordan row transforma-
tions that transforms B into a matrix of the form B′ = (En, ∗ ) necessarily
results in B′ = (En, A

−1).

Exercise 3.3.10 Give a proof for an analogue of Lemma 3.3.20 for appli-
cations of Gauß-Jordan transformations to the columns of a matrix, using
suitable regular matrices C ∈ F(m,m) and Lemma 3.3.19 (ii).

Note that, besides solving systems of linear equations, we can employ the
Gauß-Jordan procedure to determine effectively

• the row-rank/column-rank of a matrix.

• the inverse of a regular matrix.

• the dimension of the span of a finite set of vectors in Fn.

• a basis of the span of a finite set of vectors in Fn.
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For the third point just note that we may put the given vectors as the
rows (or columns) of a matrix, and then determine the rank of it.

For the fourth point, one may use a matrix that contains the given vectors
as rows, transform them according to Gauß-Jordan, and retain the non-zero
rows as the desired basis (compare Lemmas 2.4.4 and 3.3.21).

The related analysis of systems of linear equations in terms of matrices
and linear maps will be considered in the next chapter.

3.4 Aside: linear and affine transformations

We discuss affine maps [affine Abbildungen] in relation to linear maps with
a view to their geometrical significance. To exemplify the situation and to
stay close to elementary geometrical intuition we explicitly consider the case
of the real plane R2. In geometry one often uses the term transformation
[Transformation] for bijective mappings.

The linear transformations (vector space automorphisms) of R2 – repre-
sented w.r.t. the standard basis B = (e1, e2) say – give rise to the group
GL2(R) of regular 2× 2 real matrices. Any such linear transformation fixes
the null vector 0 = (0, 0) (the origin). Non-trivial translations

τu : R2 −→ R2

v 7−→ v + u

through some vector u 6= 0 are not linear. Just as affine spaces are more
general than vector spaces in that they do not have a fixed origin, affine
maps are more general than linear maps in that they need not preserve this
distinguished point. In particular, translations are perfectly admissible as
affine transformations. Translations are gemometrically very natural and we
recall how translations were built into the notion of affine spaces in section 2.3
(and how translations gave rise to the generalisation from linear to affine
subspaces). In particular, translations preserve lines (one-dimensional affine
subspaces) in the sense that the image of a line is again a line. The same is
of course true of linear transformations.

Affine transformations combine linear maps with translations.

Definition 3.4.1 An affine transformation of R2 is a map [ϕ,u] = τu ◦ ϕ,

[ϕ,u] : R2 −→ R2

v 7−→ ϕ(v) + u,
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for any fixed linear transformation ϕ (R-vector space automorphism of R2)
and u ∈ R2 (acting as a translation of R2).

Observation 3.4.2 The affine transformations of R2 form a group with
composition and idR2(= [idR2 ,0]) as its neutral element.

Exercise 3.4.1 For any two affine transformations, represent their compo-
sition [ϕ2,u2] ◦ [ϕ1,u1] in the form [ϕ,u] for suitable ϕ and u that are to be
determined in terms of ϕi,ui. With the help of this, verify the group axioms.

Definition 3.4.3 Three points of R2 are collinear [kollinear] iff they are
contained in a common line.

Exercise 3.4.2 Show that three distinct points v0,v1,v2 ∈ R2 are collinear
iff {v1 − v0,v2 − v0} is linearly dependent. [Hint: compare section 2.5.3].

Exercise 3.4.3 Let [ϕ,u] be an affine transformation of R2. Show that

(i) the image set of a line in R2 under [ϕ,u] is again a line.

(ii) any three non-collinear points are mapped by [ϕ,u] into three non-
collinear points.

(iii) [ϕ,u] is linear iff [ϕ,u](0) = 0 iff u = 0.

Lemma 3.4.4 An affine transformation of R2 is uniquely determined by
its image on any three non-collinear points in R2. For any non-collinear
v0,v1,v2 and non-collinear v′0,v

′
1,v

′
2 there is precisely one affine transfor-

mation [ϕ,u] such that [ϕ,u](vi) = v′i for i = 0, 1, 2.

Proof. Put a := v1 − v0, b := v2 − v0 and a′ := v′1 − v′0, b′ := v′2 − v′0.
By assumption, (a,b) forms a basis of R2, and so does (a′,b′).

Existence: let ϕ ∈ Aut(R2) be the unique linear map that maps a to a′

and b to b′. Let u := v′0 − ϕ(v0). Then [ϕ,u] is as desired (check this!).
Uniqueness: let [ϕ1,u1] and [ϕ2,u2] be as required. We need to show

that [ϕ1,u1] = [ϕ2,u2]. Consider [ϕ,u] := [ϕ2,u2]
−1 ◦ [ϕ1,u1], which is again

an affine transformation. It suffices to show that [ϕ,u] = idR2 . Note that
[ϕ,u](vi) = vi for i = 0, 1, 2. This implies that ϕ(a) = a and ϕ(b) = b, and
as (a,b) is a basis, ϕ = idR2 . [ϕ,u](v0) = v0 + u = v0 then implies that
u = 0, and hence [ϕ,u] = [idR2 ,0] = idR2 .

2
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We state the following without proof.

Proposition 3.4.5 The affine transformations of R2 are precisely the line-
preserving transformations: any bijective function f : R2 → R2 with the prop-
erty that the image set of any line in R2 under f is again a line, is an affine
transformation.



Chapter 4

Matrix Arithmetic

4.1 Determinants

Consider a square matrix A ∈ F(n,n).
We are interested in a simple test for regularity of A. Ideally we would

like to have an easy to compute function of the individual entries aij in A
whose value directly tells us whether A is regular or not.

Equivalently, thinking of A as a tuple of n column vectors aj ∈ Fn for
j = 1, . . . , n [or as a tuple of n row vectors ri for i = 1, . . . , n], we want a
simple computational test for whether the aj [or the ri] are mutually distinct
and linearly independent, i.e., whether they span all of Fn.

Geometrically in Rn the question whether n vectors a1, . . . , an ∈ Fn span
Rn is the same as the question whether the volume of the parallelepiped
[Parallelepiped, Spat] P (a1, . . . , an) :=

{∑n
i=1 λiai : 0 6 λi 6 1 for i =

1, . . . , n
}
⊆ Rn is different from 0. 1

P (a,b, c) ⊆ R3

0
a **TTTTTTTTTTT b

55llllllllll

c

AA�������������������

�������������������

�������������������

TTTTTTTTTTT

llllllllll

llllllllll

TTTTTTTTTTT �������������������

llllllllll

TTTTTTTTTTT

1Any figure contained inside a hyper-plane in Rn (i.e., an object of lower dimension
than n) has zero volume in Rn.
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The value of the determinant, det(A) ∈ F, also written |A|, of a matrix
A will address all these issues:

det(A) 6= 0 iff A regular,

equivalently:

det(A) = 0 iff dim
(
span(a1, . . . , an)

)
< n

iff dim
(
span(r1, . . . , rn)

)
< n

iff rank(A) < n.

In the case of Rn, det(A) will moreover be the oriented volume of the
parallelepiped given by the column vectors aj [or the row vectors ri].

An oriented volume is a real number whose absolute value gives the (non-
negative) volume in the usual sense, and whose sign accounts for the orien-
tation relative to the standard basis (e1, . . . , en). In R3 for instance, the par-
allelepiped P (e1, e2, e3) is the standard unit cube, and has (oriented) volume
1. Its mirror images are attributed oriented volume −1. This corresponds
to the geometric observation that a reflection in a plane in 3-dimensional
space inverts the orientation. For instance, the following are given oriented
volume −1: the reflection of P (e1, e2, e3) w.r.t. the 2, 3-plane, P (−e1, e2, e3);
or w.r.t. the plane spanned by e1 + e2 and e3, P (e2, e1, e3).

4.1.1 Determinants as multi-linear forms

To connect the postulates that will characterise the determinant with the
geometric intuition of an oriented volume in Rn, we collect some basic prop-
erties of the oriented volume function

µ : (Rn)n −→ R
(a1, . . . , an) 7−→ µ(a1, . . . , an) := the oriented volume of P (a1, . . . , an).

Definition 4.1.1 Consider a function f : (Fn)n → F.

(i) f is a multi-linear form [Multilinearform] iff for i = 1, . . . , n and any
fixed (n− 1)-tuple of arguments aj ∈ Fn for j 6= i, the map

Fn −→ F
a 7−→ f(a1, . . . , ai−1, a, ai+1, . . . , an)

is linear.
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(ii) f is called antisymmetric [antisymmetrisch] iff, for any 1 6 i < j 6 n
and any a1, . . . , an ∈ Fn:

ai = aj ⇒ f(a1, . . . , an) = 0.

(iii) f is called alternating [alternierend] iff, for any 1 6 i < j 6 n and any
a1, . . . , an ∈ Fn:

f(a1, . . . , ai−1, ai, ai+1, . . . , aj−1, aj, aj+1, . . . , an) =
−f(a1, . . . , ai−1, aj, ai+1, . . . , aj−1, ai, aj+1, . . . , an).

Observation 4.1.2 Let f : (Fn)n → F be multi-linear. If 1 6= −1 in F, then
f is antisymmetric iff it is alternating. 2

Proof. Consider some fixed 1 6 i < j 6 n and fixed arguments ak for
k 6= i, j. Put

g : Fn × Fn −→ F
(a,b) 7−→ f(a1, . . . , ai−1, a, ai+1, . . . , aj−1,b, aj+1, . . . , an).

For the claim of the observation we want to show that then g is antisymmetric
(g(a, a) = 0 for all a) iff g is alternating (g(a,b) = −g(b, a) for all a,b).

If g is alternating, then g(a, a) = −g(a, a) implies that g(a, a) = 0.
If g is antisymmetric, then

0 = g(a + b, a + b) = g(a, a) + g(a,b) + g(b, a) + g(b,b)
= g(a,b) + g(b, a)

implies that g(a,b) = −g(b, a).
2

Observation 4.1.3 Let f : (Fn)n → F be multi-linear and antisymmetric.
Then f(a1, . . . , an) = 0 for any linearly dependent tuple of vectors ai.

Proof. Let for instance a1 =
∑n

i=2 λiai. Then

f(a1, . . . , an) =
n∑
i=2

λif(ai, a2, . . . , an).

But f(ai, a2, . . . , an) = 0 for i = 2, . . . , n by antisymmetry.
2

2If 1 = −1 in F (fields of characteristic 2, e.g., F2), then still antisymmetry implies
alternation for any multi-linear function; but alternation rather becomes a symmetry
criterion in this case!
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Definition 4.1.4 Let n > 1. A determinant function on Fn is a function
det : (Fn)n → F which

(D1) is multi-linear,

(D2) is antisymmetric,

(D3) has value 1 on the standard labelled basis of Fn: det(e1, . . . , en) = 1.

One also may think of the determinant as a function det : F(n,n) → F, if (Fn)n

is identified with F(n,n) via the column vectors that make up a matrix. In
this context one often prefers the notation |A| for det(A).

We shall show next that for any n > 1 there is a unique function det on
(Fn)n satisfying (D1), (D2) and (D3).

4.1.2 Permutations and alternating functions

Recall from Definition 1.2.2 the group Sn of permutations of the n-element
set {1, . . . , n}, i.e., the group of bijections σ : {1, . . . , n} → {1, . . . , n} with
composition.

Any alternating function is sensitive to swaps of any two arguments: any
such swap changes the sign. We want to analyse the behaviour of an n-ary
alternating function f under arbitrary permutations of the arguments. For
an arbitrary σ ∈ Sn, i.e., a bijection σ : {1, . . . , n} → {1, . . . , n}, what is

f(aσ(1), aσ(2), . . . , aσ(n))

in terms of f(a1, . . . , an)?

Definition 4.1.5 (i) A permutation τ ∈ Sn is called a transposition [Trans-
position] if it swaps two distinct elements and leaves the rest alone:
there are 1 6 i < j 6 n such that τ(i) = j, τ(j) = i, and τ(k) = k for
all k 6= i, j. The transposition that swaps i and j is denoted τ = (i, j).
Note that τ 2 = τ ◦ τ = id for any transposition τ .

(ii) A transposition of the form (i, i + 1) for 1 6 i < n is called a next
neighbour transposition, nnt for short.

(iii) A permutation σ ∈ Sn is called even permutation [gerade] iff it can
be written as a composition of an even number of nnts; it is an odd
permutation [ungerade] iff it can be written as a composition of an odd
number of nnts.
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With any σ ∈ Sn, let us associate the number of pairs that are put in
reverse order by σ:

ν(σ) := |{(i, j) : 1 6 i < j 6 n and σ(j) < σ(i)}|.

This number is pictorially represented by the number of cross-overs be-
tween arrows in the diagram

•••

•

••
•
•

•

•

...

1

n

σ(1)

σ(2)

1

n

,,YYYYYYYYYYYYYYYYYYYYY

**UUUUUUUUUUUUUUUUUUUUUU 00̀```````````````````` 66mmmmmmmmmmmmmmmmmmmmmmm

Note that 0 6 ν(σ) 6 n(n−1)
2

and that ν(σ) = 0 only if σ = id.

Proposition 4.1.6 Let n > 2. Any permutation σ ∈ Sn can be represented
as a composition of nnts. The parity of the number of nnts in any such rep-
resentation is fully determined by σ and has value ν(σ) mod 2. In particular,
any σ ∈ Sn is either even or odd, and not both.

Proof. By induction on ν(σ), we firstly show that any σ ∈ Sn can be
written as a composition

σ = id ◦ τ1 ◦ · · · ◦ τν(σ)
with exactly ν(σ) many nnts τi.

Base case, ν(σ) = 0: σ = id (0 nnts).
Induction step, suppose the claim is true for all σ with ν(σ) < k; we need

to show the claim for σ with ν(σ) = k. Let ν(σ) = k > 0. Let i be maximal
with the property that σ(i) > σ(i + 1) (there are such i as σ 6= id). Let
σ′ := σ ◦ (i, i+ 1). Note that ν(σ′) = ν(σ)− 1. By the induction hypothesis,
σ′ = τ1 ◦ · · · ◦ τν(σ′) for suitable nnt τj. But then σ = τ1 ◦ · · · ◦ τν(σ′) ◦ (i, i+ 1)
as desired.

It remains to show that any σ is exclusively either a composition of an
even or of an odd number of nnts. For this, we observe that composition with
a single nnt always changes ν by +1 or −1. In fact, for any nnt τ = (i, i+1):

ν(σ ◦ τ) =

{
ν(σ)− 1 if σ(i) > σ(i+ 1)
ν(σ) + 1 if σ(i) < σ(i+ 1)

It follows that ν(σ) is even for an even σ, and odd for an odd σ.
2
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Definition 4.1.7 The sign [Signatur] of σ ∈ Sn is defined to be sign(σ) :=
(−1)ν(σ) ∈ {−1,+1}. Equivalently,

sign(σ) =

{
1 if σ is even
−1 if σ is odd

Lemma 4.1.8 For any alternating function f : (Fn)n → F, σ ∈ Sn and any
a1, . . . , an ∈ Fn:

f(aσ(1), . . . , aσ(n)) = sign(σ)f(a1, . . . , an).

Proof. By induction on the number of transpositions required to repre-
sent σ.

2

Exercise 4.1.1 Let n > 1. Show that the set of even permutations,

An = {σ ∈ Sn : σ even } ⊆ Sn,

also forms a group with composition. It is called the alternating group [al-
ternierende Gruppe], a subgroup of the symmetric group Sn. Determine the
size of An in terms of n.

4.1.3 Existence and uniqueness of the determinant

The last lemma and antisymmetry of any determinant function imply that
for arbitrary i1, . . . , in ∈ {1, . . . , n}:

det(ei1 , . . . , ein) =


sign(σ) if the map j 7→ ij is a

permutation σ ∈ Sn
0 else.

(∗)

Together with multi-linearity, the stipulation of values on all tuples of
standard basis vectors according to (∗) fully determines the function det.
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Let aj = (a1j, . . . , anj) for j = 1, . . . , n. Then

det(a1, . . . , an)

= det(
∑n

i1=1 ai11 ei1 , a2, . . . , an)

=
n∑

i1=1

ai11 det(ei1 , a2, . . . , an)

=
n∑

i1=1

ai11 det(ei1 ,
n∑

i2=1

ai22 ei2 , a3, . . . , an) [linearity in a1]

=
n∑

i1=1

n∑
i2=1

ai11ai22 det(ei1 , ei2 , a3, . . . , an) [linearity in a2]

= · · ·

=
n∑

i1=1

n∑
i2=1

. . .
n∑

in=1

ai11ai22 · · · ainndet(ei1 , ei2 , . . . , ein)

=
∑
σ∈Sn

sign(σ)aσ(1)1aσ(2)2 · · · aσ(n)n. [by (∗)!]

Therefore, if there is a determinant function, it is uniquely determined.

Moreover, taking the last line as a definition of det, we actually obtain
a determinant function. Recall that we view a determinant function as a
function on n × n matrices or on n-tuples of (the corresponding column)
vectors in Fn.

Proposition 4.1.9 Let

det : F(n,n) −→ F
A = (aij) 7−→ det(A) = |A| :=

∑
σ∈Sn

sign(σ)aσ(1)1aσ(2)2 · · · aσ(n)n.

This function satisfies the postulates (D1-3) of an n-dimensional determinant
function; hence it is the unique n-dimensional determinant function over F.

Proof. Uniqueness was addressed above. We need to verify that det as
defined satisfies (D1), (D2) and (D3). For (D3) see Example 4.1.10 below.

We check (D1) by showing linearity of (a1, . . . , an) 7→ det(a1, . . . , an) in
its first argument a1. Linearity in the other arguments can either be shown
in the same way, or be inferred via (D2).
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Let a1 = (a11, . . . , an1), a′1 = (a′11, . . . , a
′
n1), and λ ∈ F. We want to show

that

det(λa1, a2, . . . , an) = λdet(a1, . . . , an)
det(a1 + a′1, a2, . . . , an) = det(a1, . . . , an) + det(a′1, a2, . . . , an)

These follow straight from the definition:

det(λa1, a2, . . . , an) =
∑
σ∈Sn

sign(σ)(λaσ(1)1)aσ(2)2 · · · aσ(n)n

= λdet(a1, . . . , an);

det(a1 + a′1, a2, . . . , an) =
∑
σ∈Sn

sign(σ)(aσ(1)1 + a′σ(1)1)aσ(2)2 · · · aσ(n)n

= det(a1, . . . , an) + det(a′1, a2, . . . , an).

It remains to show (D2): det is antisymmetric. Let 1 6 i < j 6 n,
ai = aj. Let τ = (i, j) the transposition that exchanges i and j. Then

det(a1, . . . , an)

=
∑
σ∈Sn

sign(σ) aσ(1)1 · · · aσ(n)n

=
∑

σ : σ(i)<σ(j)

sign(σ) aσ(1)1 · · · aσ(n)n +
∑

σ : σ(i)>σ(j)

sign(σ) aσ(1)1 · · · aσ(n)n

=
∑

σ : σ(i)<σ(j)

sign(σ) aσ(1)1 · · · aσ(n)n +
∑

σ : σ(i)<σ(j)

sign(σ ◦ τ) aσ(1)1 · · · aσ(n)n

=
∑

σ : σ(i)<σ(j)

sign(σ) aσ(1)1 · · · aσ(n)n +
∑

σ : σ(i)<σ(j)

(−1) sign(σ) aσ(1)1 · · · aσ(n)n

= 0,

where we split up Sn according to whether a permutation reverses the order
of i and j or not. Note that ai = aj implies that aσ◦τ(i)i = aσ(j)i = aσ(j)j and
aσ◦τ(j)j = aσ(i)j = aσ(i)i, whence aσ◦τ(i)iaσ◦τ(j)j = aσ(i)iaσ(j)j.

2

Example 4.1.10 Here are some cases of particular matrices whose determi-
nant is easy to compute from scratch.

(i) The determinant of the unit matrix En has value 1:

|En| = det(e1, . . . , en) = 1.
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This follows from the observation that the only permutation σ ∈ Sn
for which all positions (σ(i), i) are on the diagonal is σ = id.

(ii) Similarly, if A ∈ F(n,n) is a diagonal matrix [Diagonalmatrix], i.e., with
off-diagonal entries aij = 0 for all i 6= j, then its determinant is just
the product of the diagonal entries aii:∣∣∣∣∣∣∣∣∣

a11 0 · · · 0
0 a22 0
...

. . .
...

0 · · · ann

∣∣∣∣∣∣∣∣∣ = a11 · · · ann.

(iii) More generally, also for an echelon (upper triangle) matrix A ∈ F(n,n),
the determinant is just the product of its diagonal entries. Note that
for an echelon matrix, aij = 0 for n > i > j > 1. Therefore, any
σ ∈ Sn which has any values σ(i) > i will not contribute, and only
σ = id remains: ∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
0 a22 · · · a2n
...

. . .
...

0 · · · ann

∣∣∣∣∣∣∣∣∣ = a11 · · · ann.

Example 4.1.11 Consider A =

(
a11 a12
a21 a22

)
∈ F(2,2). The above definition

reduces to the familiar:∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
∑

σ=id,(12)

sign(σ)aσ(1)1aσ(2)2 = a11a22 − a12a21.

Exercise 4.1.2 Similarly considering all six permutations in S3, show that
for A ∈ F(3,3):

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =


a11
(
a22a33 − a23a32

)
− a21

(
a12a33 − a13a32

)
+ a31

(
a12a23 − a13a22

)
.

The pattern according to which a 3× 3 determinant reduces to a sum of
3 determinants of the order 2× 2, is generalised in section 4.1.5 below with
the idea of expanding a determinant.
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4.1.4 Further properties of the determinant

The following is known as the shear invariance [Scherinvarianz] of the deter-
minant. This is another property that is obvious for a parallelepiped volume
in Rn. Its proof, as a simple consequence of multi-linearity and antisymmetry,
is left as an exercise.

Lemma 4.1.12 For any a1, . . . , an ∈ Fn, 1 6 i 6 n and any linear combi-
nation s =

∑
j 6=i λjaj of the arguments aj, j 6= i:

det(a1, . . . , an) = det(a1, . . . , ai + s, . . . , an) = det(a1, . . . , an).

P (a,b, c) and P (a,b, c + s)
s ∈ span(a,b)
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b
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Definition 4.1.13 For A ∈ F(n,n) let its transpose [Transponierte] AT be
obtained by exchanging entries across the (i = j)-diagonal:

for A = (aij) : AT = (aTij) where aTij := aji.

Note that transposition swaps the roles between row vectors ri and col-
umn vectors ai in A. As another consequence of the explicit definition of the
determinant we find the following property.

Lemma 4.1.14 |A| = |AT |, i.e.,

det(a1, . . . , an) = det(r1, . . . , rn),

if the aj are the column vectors and the ri the row vectors of A ∈ F(n,n).
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Proof.

det(r1, . . . , rn)

=
∑
σ∈Sn

sign(σ)a1σ(1) · · · anσ(n)

=
∑
σ′∈Sn

sign((σ′)−1)aσ′(1)1 · · · aσ′(n)n [as σ′ := σ−1 : σ(i) 7→ i]

= det(a1, . . . , an) [as sign(σ−1) = sign(σ)].

2

Multi-linearity directly shows that the column transformation of replacing
ai by ai + λaj for some i 6= j leaves det(A) invariant. For instance,

det(a1 + λa2, a2, . . . , an) = det(a1, a2, . . . , an) + λdet(a2, a2, a2, . . . , an)
= det(a1, . . . , an).

With the last lemma, the same applies to the corresponding row trans-
formations.

Corollary 4.1.15 The value of det(A) is invariant under the following row
and column transformations:

(R) replacing a row rj by rj + λri for some λ ∈ F and i 6= j.

(C) replacing a column aj by aj + λai for some λ ∈ F and i 6= j.

Exercise 4.1.3 (i) Detail the effect of the other row transformations in
Gauß-Jordan (applied to a square matrix A ∈ F(n,n)) on the value of
the determinant.

(ii) Use Example 4.1.10, part (iii), for the value of the determinant of a
square echelon matrix. Combine these insights to obtain a method for
the computation of |A| for arbitrary A ∈ F(n,n).

The determinant is compatible with matrix multiplication in the following
very nice way.

Proposition 4.1.16 For A,B ∈ F(n,n): |AB| = |A||B|.
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Proof. Let C = AB. Let the row and column vectors of A be ri and
aj as usual. Let similarly bj and cj be the column vectors of B and C,
respectively.

From the rules of matrix multiplication we find that the column vectors
cj of C are the matrix products Abj between A and the column vectors bj
of B:

cj = Cej =
∑

i cijei = ABej = Abj

= A(
∑

i bijei) =
∑

i bijAei =
∑

i bijai.

Therefore

|C| = det(c1, . . . , cn) = det
(
Ab1, . . . Abn

)
= det

(∑
k bk1ak,

∑
k bk2ak, . . . ,

∑
k bknak

)
=

n∑
k1=1

n∑
k1=2

· · ·
n∑

kn=1

det(bk11ak1 , bk22ak2 , . . . , bknnakn).

In the last nested sum only those contributions can be non-zero for which
i 7→ ki is a permutation; in all other cases the determinant has two linearly
dependent arguments. Therefore

|C| =
∑

σ∈Sn
bσ(1)1 · · · bσ(n)ndet(aσ(1), . . . , aσ(n))

=
∑

σ∈Sn
sign(σ) bσ(1)1 · · · bσ(n)ndet(a1, . . . , an)

= |B||A|.

2

Exercise 4.1.4 Give an alternative proof of the assertion of the proposition,
in the case where |A| 6= 0. Show that for any fixed A, the function

f : F(n,n) −→ F
B 7−→ |AB|

|A|

satisfies (D1-3). Hence it must be the determinant function with value |B|
on B.

The behaviour of determinants on matrix products implies that for a
regular matrix A with inverse A−1, 1 = |En| = |AA−1| = |A| · |A−1|. We
obtain two corollaries.
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Corollary 4.1.17 If A is regular then |A| 6= 0.

Together with Observation 4.1.3 above, we have thus established non-
vanishing determinant as a criterion for regularity.

Corollary 4.1.18 Similar matrices have the same determinant: if C is reg-
ular with inverse C−1, then

|CAC−1| = |A|.

Recall that a similarity class of matrices in F(n,n) precisely corresponds
to all the representations [[ϕ]]BB of some endomorphism ϕ ∈ Hom(Fn,Fn), for
arbitrary choices of bases B for Fn. Invariance of the determinant across
entire similarity classes means that |A| is fully determined by the underlying
endomorphism ϕ – any representational matrix [[ϕ]]BB for ϕ will produce the
same value for its determinant.

Observation 4.1.19 The map that associates with any endomorphism ϕ ∈
Hom(Fn,Fn) the value of the determinant |ABBϕ | for any labelled basis B of
Fn, is well defined (determinant of an endomorphism).

4.1.5 Computing the determinant

The following technique is known as expanding a determinant [Entwicklung].
Let A = (aij) ∈ F(n,n) with entries aij forming the column vectors a1, . . . an ∈
Fn.

We give a typical example of this technique at first. “Expanding det(A)
w.r.t. the last column an” means that we use linearity of |A| = det(a1, . . . , an)
in its last argument an to reduce the problem of calculating |A| to the calcu-
lation of several determinants for smaller sub-matrices of A. From linearity
in the last argument:

|A| = det(a1, . . . , an)

=
n∑
i=1

aindet(a1, . . . , an−1, ei)

=
n∑
i=1

(−1)n+iain |A[in]|,
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where A[in] is the (n− 1)× (n− 1) matrix obtained from A by deleting the
last column and the i-th row:

A =



a11 · · · a1(n−1) a1n
...

...
...

a(i−1)1 · · · a(i−1)(n−1) a(i−1)n
ai1 · · · ai(n−1) ain

a(i+1)1 · · · a(i+1)(n−1) a(i+1)n
...

...
...

an1 · · · an(n−1) ann


A[in] =



a11 · · · a1(n−1)
...

...
a(i−1)1 · · · a(i−1)(n−1)

a(i+1)1 · · · a(i+1)(n−1)
...

...
an1 · · · an(n−1)


The justification of the formula is based on the observation that

det(a1, . . . , an−1, ei) = (−1)n−idet(A[in]) = (−1)n+idet(A[in]). For this ob-
serve that, by alternation w.r.t. rows:

det(a1, . . . , an−1, ei)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1(n−1) 0
...

...
...

a(i−1)1 · · · a(i−1)(n−1) 0
ai1 . . . ai(n−1) 1

a(i+1)1 · · · a(i+1)(n−1) 0
...

...
...

an1 · · · an(n−1) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−i

∣∣∣∣∣∣∣∣∣
A[i n]

0
...
0

ai1 . . . ai(n−1) 1

∣∣∣∣∣∣∣∣∣
Note that in the last transformation we perform (n−i) swaps of (adjacent)

row vectors to bring the i-th row to the bottom. This introduces a factor
of (−1)n−i = (−1)n+i. For the evaluation of that determinant, finally, note
that the permutations σ ∈ Sn for which we get non-zero contributions are
precisely those with σ(n) = n. These restrict to permutations in Sn−1 of the
same sign. Therefore, these summands correspond to det(A[in]).

For expansion w.r.t. some other column k, similarly, the above transfor-
mation would be combined with n− k swaps of columns in order to put A[ik]

into the upper left square and to turn the last column into en. The overall
sign change is then described by (−1)n−k(−1)n−i = (−1)i+k.

We sum up these observations, which also apply to rows instead of columns
via passage to the transpose.
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Proposition 4.1.20 Let A ∈ F(n,n) have entries aij in the i-th row and j-th
column. For 1 6 i, j 6 n let A[ij] stand for the matrix in F(n−1,n−1) obtained
from A by deletion of the i-th row and j-th column.

For any choice of a row or column index 1 6 k 6 n, det(A) can be
expanded w.r.t. the k-th column according to

|A| =
∑
i

(−1)i+kaik|A[ik]|,

or w.r.t. the k-th row according to

|A| =
∑
j

(−1)k+jakj|A[kj]|.

Exercise 4.1.5 Check the above rules explicitly for n = 3 and compare with
the previous Exercise 4.1.2.

4.2 Inversion of matrices

The determinants of the reduced matrices A[ij] also play an important role in
the explicit computation of the inverse of a regular matrix A ∈ F(n,n) (inverse
w.r.t. matrix multiplication, i.e., in the group GLn(F)).

We know from the last section that A is regular iff det(A) 6= 0.
Consider now the matrix A′ with entries

a′ij := (−1)i+j|A[ji]|.

Note that the passage from A to A′ involves the reduced matrix in trans-
posed positions, and an application of a chequer board sign pattern of +/−
weights (here for n = 5): 

+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +


We calculate the matrix product C := A′A, whose entries we denote cij:

cij =
∑
k

a′ikakj =
∑
k

(−1)k+i|A[ki]| akj =
∑
k

akj(−1)k+i|A[ki]|.
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For i = j this is the expansion of det(A) w.r.t. the i-th column, and we
find that

cii = |A|.
All other (non-diagonal) entries cij for i 6= j are in fact 0, as they corre-

spond to the determinant of a matrix Ai/j in which the i-th column ai of A
has been replaced by a copy of the j-th column aj. But any such determinant
is 0 by antisymmetry! Therefore, we have found that

A′A = |A|En,

whence the inverse of A ∈ GLn(F) is the matrix |A|−1A′, with entries
(j)

...

(i) · · · (−1)i+j
|A[ji]|
|A|


Exercise 4.2.1 Explicitly compute the entries in the inverse matrix of the
general regular 2× 2 matrix, and similarly for regular 3× 3 matrices.

4.3 Systems of linear equations revisited

We are now equipped for a comprehensive treatment of systems of linear
equations. The theory we have developed so far allows us

• to connect systems of linear equations with linear maps,

• to solve them using matrix arithmetic, and

• to determine solvability and the dimension of the solution space in
terms of ranks and determinants of matrices.

Recall that a system of m linear equations over Fn has the form

E = E[A,b] :



a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

a31x1 + a32x2 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + · · ·+ amnxn = bm,
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where we regard this system as generated from the matrix A = (aij) of
coefficients on the left-hand side and the column vector b of coefficients on
the right-hand side.

A =

 a11 · · · a1n
...

...
am1 · · · amn

 with column vectors aj =

 a1j
...
amj

 ,

b =

 b1
...
bm

 .

Note that the entire system E can thus be written as a11 · · · a1n
...

...
am1 · · · amn


 x1

...
xn

 =

 b1
...
bm

 or just: Ax = b.

The associated homogeneous system E∗ is obtained by replacing b by 0,
i.e., E∗ = E[A,0].

4.3.1 Using linear maps and matrices

Regarding the system E = E[A,b] as a vector equation Ax = b in Fm, we
may consider the left-hand side of that equation as describing the image of
a vector x = (x1, . . . , xn) ∈ Fn under the linear map

ϕ = ϕA : Fn −→ Fm

(x1, . . . , xn) 7−→ Ax =
∑

j xjaj,

where the aj are the column vectors of the matrix A. In this sense, E =
E[A,b] becomes the equation ϕA(x) = b while the homogeneous system E∗

is equivalent to ϕA(x) = 0.
For the homogeneous system, the solution space therefore is

S(E∗) =
{
x ∈ Fn : ϕA(x) = 0

}
= ker(ϕA).

We thus find, with Theorem 3.1.12, that the dimension of the solution
space of E∗ is

dim(S(E∗)) = n− dim(image(ϕA)) = n− rank(A).
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This also confirms again that there must be non-trivial solutions in case
m < n, simply because rank(A) 6 min(m,n).

For the corresponding solution sets of the original inhomogeneous system
E we know that it is either empty, or an affine subspace generated by any
fixed solution to E and the subspace S(E∗). If non-empty, the dimension of
this affine subspace is the same as the dimension of S(E∗).

In terms of the map ϕA, moreover, we can say that E has a solution iff
b ∈ image(ϕA) iff

b ∈ span(a1, . . . , an).

Lemma 4.3.1 Let E = E[A,b] and let [A,b] be the matrix with column vec-
tors a1, . . . , an,b, [A,b] ∈ F(m,n+1). Then S(E) 6= ∅ iff b ∈ span(a1, . . . , an)
iff

rank([A,b]) = rank(A).

Proof. Recall that the rank of a matrix is the dimension of the span of
its column vectors. Therefore rank([A,b]) = rank(A) iff

dim(span(a1, . . . , an,b)) = dim(span(a1, . . . , an))

iff these two spans are equal, i.e., iff b ∈ span(a1, . . . , an) = image(ϕA).
2

Note that b ∈ span(a1, . . . , an) = image(ϕ) will be the case for any b
if ϕA is surjective. But ϕA is surjective (an epimorphism) iff rank(ϕA) =
rank(A) = m.

On the other hand, we know that any solution (if it exists) is unique iff
ϕA is injective (a monomorphism) iff ker(ϕA) = {0} iff dim(image(ϕA)) = n
iff rank(ϕA) = rank(A) = n.

Observation 4.3.2 For E = E[A,b] where A ∈ F(m,n) and b ∈ Fm:

(i) E[A,b] is solvable for every right-hand side b ∈ Fm iff rank(A) = m.
(NB: this can only happen if m 6 n.)

(ii) E[A,b] has at most one solution for every choice of a right-hand side
b ∈ Fm iff rank(A) = n. (NB: this can only happen if n 6 m.)

(iii) E[A,b] has precisely one solution for every choice of a right-hand side
b ∈ Fm iff rank(A) = n = m.
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Note that if rank(A) < m then row transformations according to Gauß-
Jordan will allow us to transform E = E[A,b] into an equivalent system
Ê = E[Â, b̂] such that

(i) either Ê obviously has no solutions, because it contains equations of
the form 0 = b̂i for b̂i 6= 0.

(ii) or rank(Â) = rank(A) = m̂, the new number of rows; this variant is
achieved by dropping the trivial rows 0 = 0 in the outcome of Gauß-
Jordan.

4.3.2 Solving regular systems

We call a system of linear equations regular if its left-hand side matrix of
coefficients A is a regular square matrix.

In this case we know that also every inhomogeneous system E[A,b] has a
unique solution. In fact there is a simple formula for obtaining this solution
involving the determinant.

First observe that the inverse matrix A−1 of A (A is regular) holds the
key to the solution of the inhomogeneous system E[A,b] as

S(E[A,b]) =
{
x ∈ Fn : ϕA(x) = b

}
= ϕ−1A (b) =

{
A−1b

}
,

since the inverse matrix represents the inverse map.
However, the solution A−1b is even more directly available in a manner

known as Cramer’s rule [Cramersche Regel].

Lemma 4.3.3 Let A ∈ F(n,n) be regular, b = (b1, . . . , bn) ∈ Fn. Then the
unique solution to the inhomogeneous system of linear equations E[A,b] is
obtained as x = (x1, . . . , xn) where

xi = |A|−1 det
(
a1, . . . , ai−1,b, ai+1, . . . , an

)
.

Proof. Let x = (x1, . . . , xn) be the solution. That means that

b =
∑
j

xjaj.

Feeding this into det(a1, . . . , ai−1,b, ai+1, . . . , an) we get

det
(
a1, . . . , ai−1,

∑
j xjaj, ai+1, . . . , an

)
=

∑
j xj det

(
a1, . . . , ai−1, aj, ai+1, . . . , an

)
.
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The only non-zero contribution in the sum, if any, occurs for j = i (anti-
symmetry!), which yields

det
(
a1, . . . , ai−1,b, ai+1, . . . , an

)
= xi det

(
a1, . . . , ai−1, ai, ai+1, . . . , an

)
= xi |A|,

i.e., xi = |A|−1 det
(
a1, . . . , ai−1,b, ai+1, . . . , an

)
as claimed.

2



Chapter 5

Outlook: Towards Part II

5.1 Euclidean and Unitary Spaces

This first part of the course, Linear Algebra I, has laid the foundations for
the study of vector spaces and linear maps. But so far we have ignored
another feature of the geometrically most familiar spaces Rn. Their linear
structure, i.e., their structure as plain vector spaces, does not account for
metric issues that revolve about lengths and angles. In the plain vector
space Rn, without additional structure, concepts like orthogonality make no
sense, and the role of rotations and reflections as very special endomorphisms
cannot be properly understood. In fact, we know that the vector spaces Rn
admit automorphisms that do neither preserve lengths nor angles. To capture
these essential geometric notions, we need extra structure, like the familiar
scalar product between vectors in Rn. This is defined as a binary operation
from vectors to scalars,

〈., .〉 : Rn × Rn −→ R
(v,w) 7−→ 〈v,w〉 =

∑n
i=1 viwi,

where v = (v1, . . . , vn) and v = (w1, . . . , wn). Using column and row vectors,
and treating them as special cases of slim matrices, this product can also be
cast as a special matrix multiplication, which results in a one-by-one matrix
in R(1,1) ' R:

〈v,w〉 =
n∑
i=1

viwi = (v1, . . . , vn)

w1
...
wn

 = vt ·w.

137
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Note that we have now made a decision to regard column vectors as the
standard, and to turn them into row vectors by transposition when necessary.
This decision constitutes no more than a notational convention – but one to
which we adhere from now on.

With respect to this scalar product, orthogonality becomes definable by
the condition that 〈v,w〉 = 0; the length (norm) of a vector v can be com-
puted as the square root of 〈v,v〉; we may speak of unit vectors (vectors of
norm 1), normalise non-null vectors, etc.

The general format of the map 〈., .〉 : V ×V → F is that of a bilinear form
(it is linear in both arguments) that is also symmetric (invariant under a swap
of the arguments) and positive definite (〈v,v〉 > 0 for v 6= 0). Over R-vector
spaces, we speak of real scalar products . Because of their close relationship
with the analytic view on euclidean geometry, R-vector spaces with a scalar
product are called euclidean spaces. We note in this situation how additional
structure reduces the automorphism group and allows for additional notions
that can be defined and investigated. Automorphisms of a euclidean space
need not just to preserve the linear vector-space structure but also the scalar
product and this also derived notions like lengths and angles.

The enrichment of the linear structure by a scalar product is obviously es-
sential for putting the basic geometric intuition about euclidean space within
the realm of linear algebra for R-vector spaces. It allows to generalise and
extend this intuition to C-vector spaces, which, like R-vector spaces have
many natural applications, e.g., in physics. As we shall see later, the com-
plex analogue over C-vector spaces works with a further generalisation of
bi-linearity and symmetry that takes into account the operation of complex
conjugation over C. A complex scalar product will be a 2-form that is semi-
bilinear (rather than bilinear) and hermitian (rather than symmetric) so that
〈v,v〉 will always be a real number and positive definiteness can be defined
as before. A C-vector space with a complex scalar product is a unitary space.

Example 5.1.1 A single homogeneous equation, E∗ :
∑n

i=1 aixi = 0, in Rn
may be read as an orthogonality condition, 〈a,x〉 = 0, between x and the
vector of coefficients a. In the non-degenerate case of a 6= 0, its solution
space thus is the hyperplane orthogonal to a, the so-called orthogonal com-
plement of the one-dimensional subspace spanned by a. The solution set of a
homogeneous system of linear equations E∗ = E[A,0] based on the matrix of
coefficients A ∈ F(m,n) correspondingly is the intersection of the orthogonal
complements of the m one-dimensional subspaces spanned by the individual
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row vectors of A. Similarly, the solution set for the inhomogeneous linear
equation E :

∑n
i=1 aixi = b, or equivalently 〈a,x〉 = b, is geometrically char-

acterised in terms of its orthogonality w.r.t. the axis spanned by a and its
distance (oriented in the direction of a) from the origin 0.

Scalar products and other bilinear forms can themselves be represented
by square matrices w.r.t. chosen bases and studied in terms of their basis
representations. The transformation of these matrix representations of bi-
linear forms under changes of the basis is characteristically different from
the one we studied for representations of endomorphisms. This new role for
the matrices in the rings F(n,n) therefore adds another level of algebraic and
geometric meaning.

As is familiar from the basic examples of R2 or R3 with their standard
scalar products, bases consisting of pairwise orthogonal unit vectors, so-called
orthonormal bases are especially useful for the representation of, e.g., linear
maps w.r.t. their euclidean geometry. The existence of such bases, the special
features of changes between such bases, the study of endomorphisms that pre-
serve the scalar product (or just preserve orthogonality but allow re-scaling,
etc.) crucially enriches the study of endomorphisms in these spaces.

Example 5.1.2 Let U ⊆ R3 be 2-dimensional subspace (a plane through the
origin). The orthogonal projection onto U , ϕU , can be defined geometrically
(with the standard scalar product) by the conditions that image(ϕU) = U ,
that U consists of fixed points of ϕU , and that the kernel of ϕU is orthogonal to
U . These conditions are readily implemented in a matrix representation w.r.t.
a basis B = (b1,b2,b3) of R3 in which the given plane is U = span(b2,b3)
and whose first basis vector b1 is orthogonal to that plane. The entries of
the matrix

[[ϕU ]]BB =

 0 0 0
0 1 0
0 0 1


are directly read off from the conditions that ϕU(b1) = 0, and that the
restriction of ϕU to U is the identity on U . While the representation would
be unchanged if the pair (b2,b3) is replaced by any other basis for U , it is
essential that the other basis vector is orthogonal to U .

Example 5.1.3 The cross product or vector product a1 × a2 of two vectors
a1 and a2 in R3 is geometrically defined with implicit reference to the stan-
dard scalar product in R3 and to a chosen orientation of R3. For linearly
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independent a1, a2, the resulting vector a1×a2 is orthogonal to the subspace
U spanned by a1 and a2, its norm is equal to the area of the parallelogram
spanned by a1 and a2, and its orientation within the 1-dimensional subspace
orthogonal to U is such that (a1, a2, a1 × a2) is a positively oriented as a
basis of R3. These conditions determine the relationship between the cross
product and the determinant. Writing a1 × a2 =: b = (b1, b2, b3), we find –
this should be a nice exercise! – that

bi = det(a1, a2, ei).

5.2 Eigenvalues and eigenvectors

One of the core topics of linear algebra concerns the choice of suitable bases
for the representation of linear maps or of bilinear forms. For instance, for
an endomorphism ϕ : V → V of the n-dimensional F-vector space V , we
want to find a basis B = (b1, . . . ,bn) of V that is specially adapted to make
the matrix representation Aϕ = [[ϕ]]BB ∈ F(n,n) as simple as possible for the
analysis of the map ϕ itself. Matrix representations with respect to suitably
chosen bases can exhibit insights in the algebraic and geometrical behaviour
of linear maps or of bilinear forms. For the familiar case of R2 and R3

consider rotations as linear maps. Rotations in Rn are geometrically special
in that they preserve the scalar product, i.e., they are automorphisms of the
standard euclidean structure on Rn. A rotation in R2 does not necessarily
have any fixed points apart from the null vector 0. In R3, on the other hand,
any rotation has an axis of rotation that consists of fixed points (compare
Example 5.2.1 below). In fact, a rotation of R3 can be analysed geometrically
in terms of its axis and a 2-dimensional rotation in the plane orthogonal to
that axis. It is trivial in the direction of the axis. A suitably adapted
choice of (an orthonormal) basis, in which the first basis vector spans the
axis and the other two span its orthogonal complement would reveal this
decomposability: the first row and column in its matrix representation with
respect to such a basis would contain an entry 1 on the diagonal as the
only non-zero entry; and the remainder of the matrix would have to be the
representation of the 2-dimensional rotation in the plane orthogonal to the
axis. The orthogonal complement of the axis of rotation exemplifies another
concept: it is an invariant subspace, i.e., a subspace that is mapped into itself
under the endomorphism (in our case it is preserved as a subspace, but need
not contain any non-trivial fixed points).
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More generally, and even without an accompanying scalar product, the
investigation of special axes is based on the study of eigenvectors and accom-
panying eigenvalues of endomorphisms ϕ. An eigenvector is a vector v 6= 0
that is mapped to a scalar multiple of itself under ϕ. So ϕ(v) = λv for some
λ ∈ F, the corresponding eigenvalue. If v is an eigenvector with eigenvalue
λ, it spans a one-dimensional subspace U = span(v) = {µv : µ ∈ F}, which
is invariant under ϕ. It is preserved by ϕ as a subspace in the sense that
ϕ(u) = λu ∈ U for all u ∈ U . If v is an eigenvector with eigenvalue λ, then,
in restriction to U , ϕ acts as a rescaling with the factor λ in the direction of
v.

To find an eigenvector v of ϕ for eigenvalue λ ∈ F, we need to find
a non-trivial solution to the homogeneous linear equation ϕ(x) = λx or,
equivalently,

ϕ(x)− λx = 0.

A non-trivial solution exists if, and only if, the associated endomorphism
ϕ − λidV has non-trivial kernel. So the question whether ϕ has λ as an
eigenvalue is the same as the question whether ϕ−λidV has non-trivial kernel.
We know that, in the finite-dimensional case, this question is determined
by the rank of ϕ − λidV , and thus by the value of the determinant (with
λ as parameter). We recall that this determinant can be calculated from
any matrix representation of the endomorphism, with a result that does
not depend on the chosen basis. A large part of our study of eigenvalues
and eigenvectors will therefore draw on these determinants. As we think
of the parameter λ as a variable that stands for the candidate eigenvalues,
then the study of the determinant of ϕ − λidV leads us to the algebraic
study of polynomials in a single variable. The polynomial in question is the
characteristic polynomial, whose zeroes are precisely the eigenvalues of ϕ.

As indicated above, eigenvalues and eigenvectors often have further sig-
nificance, either geometrically or in terms of the phenomena modelled by a
linear map.

Example 5.2.1 Consider an endomorphism ϕ of R3 that preserves the stan-
dard scalar product in the sense that for all a1, a2 ∈ R3

〈ϕ(a1), ϕ(a2)〉 = 〈a1, a2〉.

It follows that ϕ is an isometry, i.e., that it preserves the length (norm)
of vectors (w.r.t. standard scalar product). In fact the latter condition is
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only seemingly weaker than the former, as we shall see later. From our
condition it is clear that ϕ preserves orthogonality between pairs of vectors.
The characteristic polynomial pϕ(λ) of ϕ, which is the determinant of the
endomorphism ϕ − λidR3 as a function in the variable λ, is a polynomial of
degree 3. Looking at pϕ(λ) as a continuous function from R to R, we see that
it must have at least one zero (why?). So ϕ must have at least one eigenvalue
λ, and hence an eigenvector v 6= 0 for which ϕ(v) = λv. Preservation
of the scalar product and the length of vectors implies that λ ∈ {−1, 1}.
Geometrically this means that the 1-dimensional invariant subspace span(v)
either consists of fixed points or is mirror-reversed within itself. In either
case, since ϕ preserves orthogonality, the orthogonal complement of span(v)
is a 2-dimensional subspace that is also invariant under ϕ. Moreover, the
restriction of ϕ must again be an isometry (of that invariant subspace). The
analysis can be carried further to establish that any isometry of 3-dimensional
euclidean space must be a composition of rotations and mirror-reflections (in
2-dimensional subspaces). (You may know from elementary geometry that
any 2-dimensional rotation can also be represented as the composition of two
mirror-reflections in suitable lines; its follows that all isometries of euclidean
3-space are compositions of mirror-reflections in 2-dimensional subspaces.)

Example 5.2.2 Consider the homogeneous linear differential equation of
the harmonic oscillator

d2

dt2
f(t) + cf(t) = 0

with a positive constant c ∈ R and for C∞ functions f : R → R (modelling,
for instance, the position of a mass attached to a spring as a function of
time t). One may regard this as the problem of finding the eigenvectors
for eigenvalue −c of the linear operator d2

dt2
that maps a C∞ function to its

second derivative. In this case, there are two linearly independent solutions
f(t) = sin(

√
c t) and f(t) = cos(

√
c t) which span the solution space of this

differential equation. The eigenvalue −c of d2

dt2
that we look at here is related

to the frequency of the oscillation (which is
√
c/2π).

Example 5.2.3 [from classical mechanics: moments of inertia]
Consider the motion of a rigid body, whose centre of gravity is at rest, in
3-space. We choose a fixed frame of reference with the null vector at the
body’s centre of gravity. Then its current position at time t can be described
by the isometry ϕt that transforms its original position at time 0 into the
current position.
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Intuition: this isometric transformation transforms the fixed frame of
reference B = (b1,b2,b3) = B(0) of the external observer into the moving
frame of reference B(t) = (b1(t),b2(t),b3(t)) that an inhabitant of the rigid
body would regard as stationary.

The momentary velocities of points in the rigid body (relative to the
external frame) are obtained as time derivatives as follows. If x is a fixed
location in B(0) (a particle of the rigid body), then this point moves along
the trajectory r(t) = ϕt(x) and its momentary velocity at time t is

ṙ(t) = ϕ̇t(x) = ϕ̇t(ϕ
−1
t (r(t))) =

(
ϕ̇t ◦ ϕ−1t

)
(r(t)),

where ϕ̇t is the time derivative of ϕt. Differential calculus and linear algebra
show that the momentary motion at time t as seen from the external observer
can be described as a momentary rotation about a momentary axis of rota-
tion. This is described as an angular velocity vector ω(t): span(ω(t)) is the
current axis of rotation, and the length of ω is the scalar angular velocity.1

Interestingly, from the point of geometry and linear algebra, the current
axis of rotation, span(ω(t)), is determined as

span(ω(t)) = ϕ(ker(ϕ̇t)) = ker(ϕ̇t ◦ ϕ−1t ).

In the terminology to be used in Part II, the map ϕ̇t◦ϕ−1t is anti-symmetric
w.r.t. the standard scalar product in R3, which here implies that

ṙ(t) = ϕ̇t(x) = ω(t)× r = ω(t)× ϕt(x).

In particular, as long as ϕ̇t 6= 0, anti-symmetry of the map ϕ̇t◦ϕ−1t implies
that its kernel has dimension 1 and that its image is orthogonal to its kernel.2

In the absence of external forces, the laws of classical mechanics put two
constraints on the dynamics of this motion: conservation of kinetic energy
K(t) and of angular momentum L(t). Therefore the dependence of these
quantities on ϕt and ω(t) governs the equations of motion.

The contribution to the angular momentum of an individual unit mass
particle at a fixed position x in the rigid body (and thus at position r(t) =
ϕt(x) relative to B(0)) is

r(t)× ṙ(t) = ϕt(x)× (ω(t)× ϕ(x)) = ϕt
(
x× (ϕ−1t (ω(t))× x)

)
,

1The absolute value of the scalar angular velocity is time derivative of the angle in
polar coordinates; its sign need to match the orientation of ω(t) in span(ω(t)).

2Geometrically, ϕ̇t ◦ϕ−1
t is the composition of an orthogonal projection in the direction

of ω(t) followed by a 90◦ rotation and rescaling with the scalar angular momentum.
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which is linear in ω(t). Our insights into change of basis transformations
show that the time-independent linear map

I : ϕ−1t (ω(t)) 7−→ ϕ−1t (L(t))

represents the map ω(t) 7−→ L(t) in terms of the moving frame of reference
B(t). It is called the moment of inertia and only depends on the distribution
of mass within the rigid body. Moreover, this endomorphism is symmetric
w.r.t. the standard scalar product.

Another map, ω(t) 7−→ K(t), similarly expresses the kinetic energy in
terms of just ϕ−1t (ω(t)) and the static moment of inertia I. It has the format
of a quadratic form:

ω(t) 7−→ K(t) = 〈ω(t),L(t)〉 = 〈ϕ−1t (ω(t)), ϕ−1t (L(t))〉.

In terms of the moving frame of reference B(t), we may regard it as being
induced by a second scalar product, which is obtained by modifying 〈·, ·〉
with I according to (u,v) 7−→ 〈u, Iv〉.

As our analysis in Part II will show, endomorphisms of Rn that are sym-
metric w.r.t. the standard scalar product can always be diagonalised w.r.t.
an orthonormal basis. In our case this means that I admits a diagonal rep-
resentation

[[I]]BB =

 λ1 0 0
0 λ2 0
0 0 λ3


w.r.t. the right choice of orthonormal basis B = (b1,b2,b3) = B(0) (which is
carried along with ϕt to produce B(t), in which I is statically represented in
this diagonal form). The eigenvalues λi are determined as the zeroes of the
characteristic polynomial pI = det(I − λid), and in our case are all positive.
If the λi are pairwise distinct, then the three distinguished axes spanned by
corresponding eigenvectors are uniquely determined and define three pairwise
orthogonal axes (static only in the moving frame of reference B(t)). These
are the principal axes of inertia of the rigid body.

The current axis of rotation span(ω) is aligned with the angular momen-
tum L if, and only if, ϕ−1t (ω) is an eigenvector of I. So, in the generic case
with three distinct eigenvalues, there are just three admissible axes of rotation
that can be static relative to the rigid body: if ϕ−1t (ω) is not an eigenvector
of I, then conservation of angular momentum implies that L rather than ω
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is constant. Combining this with the constraint imposed by conservation of
kinetic energy, one can see that among the three axes that are admissible
as stationary axes of rotation, only the ones with the extremal eigenvalues
constitute a stable equilibrium. The axis of the intermediate eigenvalue can
tilt away in two independent directions without violating either conservation
of energy or angular momentum.

The analysis shows that the two conservation conditions constrain ϕ−1t (ω)
(i.e., ω w.r.t. the moving frame) to an ellipsoid (for constant K(t)) and to
a sphere (for constant L(t) in the external frame). In the distinguished
orthonormal basis B = (b1,b2,b3) that diagonalises I and for ϕ−1t (ω) =∑

i ωibi, the condition

〈ω,L〉 = 〈ϕ−1t (ω), Iϕ−1t (ω)〉 =
∑

i λiω
2
i = c

defines an ellipsoid with principal axes spanned by the basis vectors bi. A
sphere that meets a concentric ellipsoid in the end points of one of its principal
axes locally has the following intersection pattern with the ellipsoid:

(i) a single point (stable) in the case of the longest principal axis (minimal
eigenvalue): the whole ellipsoid lies inside the sphere;

(ii) a single point (stable) in the case of the shortest principal axis (maximal
eigenvalue): the whole sphere lies inside the ellipsoid;

(iii) two crossing curves of intersection (unstable) in the case of the inter-
mediate axis:the ellipsoid is partly inside, partly outside the sphere.

These phenomena are easily displayed in simple experiments (and will be
displayed in class when we shall know the mathematics, in Part II).

Example 5.2.4 In quantum mechanics, states of a physical system are mod-
elled as vectors of a C-vector space (e.g., of wave functions). Associated
physical quantities (observables) are described by linear (differential) op-
erators on such states, which are endomorphisms of the state space. The
eigenvectors of these operators are the possible outcomes of measurements
of those observables. Here one seeks bases of the state space made up from
eigenvectors (eigenstates) associated with particular values for the quantity
under consideration via their eigenvalues. With respect to such a basis an
arbitrary state can be represented as a linear combination (superposition) of
eigenstates, accounting for components which each have their definite value
for that observable, but mixed in a composite state with different possible
outcomes for its measurement.
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ring (Ring), 42

ring of endomorphisms
(Endomorphismenring), 102

row vector (Zeilenvektor), 9

row-rank (Zeilenrang), 109

scalar product, 138

scalar product (Skalarprodukt), 138

shear invariance (Scherinvarianz ), 126

sign (Signatur), 122

sign (Vorzeichen), 122
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