

22/23.01.2009

Analysis II für M, HLM, Ph

11. Übung

Gruppenübung

G 32 Taylor-Entwicklung

Bestimme die Taylor-Entwicklung der Funktion

$$f: (0, \infty) \times (0, \infty) \to \mathbb{R}, \quad f(x, y) = \frac{x - y}{x + y}$$

im Punkt (1,1) bis einschließlich der Glieder 2. Ordnung.

G33 Extremstellen

Bestimme die kritischen Punkte von

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \quad f(x,y) = (x^2 + y^2)((x-1)^2 + y^2)$$

(d.h. die Punkte $(x_0, y_0) \in \mathbb{R}^2$ mit grad $f(x_0, y_0) = 0$) und finde heraus, welche davon lokale Extremstellen sind.

G34 Hessematrix

Untersuche in Abhängigkeit von $n \in \mathbb{N}$, ob die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$.

$$f(x,y) = x^n + y^n,$$

im Punkt (0,0) ein lokales Minimum oder Maximum hat. Ist die Hessematrix (Hess f)(0,0) im Fall einer Extremstelle positiv bzw. negativ (semi-)definit? Ist die Hessematrix im Fall, dass keine lokale Extremstelle vorliegt, indefinit? Wiederspricht dies den Aussagen der Vorlesung über notwendige und hinreichende Kriterien von lokalen Extremstellen?

Hausübung

H31 Taylorpolynom (3 Punkte)

Wir betrachten zwei Funktionen f und g, die wie folgt definiert sind:

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x^2 \sin(xy/2)$$

$$g: \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}, \ g(x,y) = x^2 - \cos(x/y).$$

- a) Berechnen Sie das Taylorpolynom 2. Grades von f mit der Entwicklungsstelle $(1, \pi)$ (ohne das Restglied zu bestimmen).
- b) Entwickeln Sie g um den Punkt $(\pi, 1)$ mit der Taylorformel mit m = 2 (ohne das Restglied zu bestimmen).
- c) Vergleichen Sie die Funktionswerte $f(1.1, \pi)$ und $g(\pi + 0.1, 0.8)$ mit den entsprechenden Näherungswerten aus der Taylorentwicklung.

H32 Der Affensattel (3 Punkte)

Wir betrachten die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 - 3xy^2$.

- 1. Bestimme die Ableitung Df von f.
- 2. Bestimme die Hessematrix $H_f=(\frac{\partial^2 f}{\partial x_i\partial x_j})_{i,j}$ an der Stelle 0.
- 3. Ist H_f positiv definit, indefinit oder negativ definit?
- 4. Hat die Funktion f an der Stelle 0 ein Extremum?

H33 Quadriken (4 Punkte)

Es sei A eine positiv definite reelle $n \times n$ -Matrix und $b \in \mathbb{R}^n$ mit $b \neq 0$.

- 1. Zeigen Sie, daß A invertierbar und A^{-1} positiv definit ist.
- 2. Es sei $Q := \{x \in \mathbb{R}^n \mid x^T A x = 1\}$ die sog. Kennlinie von A. Zeigen Sie, daß die Funktion $x \mapsto \langle b, x \rangle$ auf Q genau ein globales Minimum und genau ein globales Maximum hat.