

20/21.11.2008

Analysis II für M, HLM, Ph

5. Übung

Gruppenübung

G13 Norm und Topologie

- a) Zeige, daß für alle $x \in \mathbb{R}^n$ gilt $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$. Folgere daraus, daß $U \subseteq \mathbb{R}^n$ offen ist bezüglich $||\cdot||_2$ genau dann, wenn U offen ist bezüglich $||\cdot||_{\infty}$.
- b) Da alle Normen auf \mathbb{R}^n äquivalent sind, kann jede Norm durch $k \cdot || \cdot ||_1$ beschränkt werden für ein geeignetes $k \in \mathbb{R}^+ \setminus \{0\}$. Bestimme ein solches k.

Hinweis: Verwende die Standardbasis von \mathbb{R}^n .

G14 Rand, Abschluss, Innneres

Wir betrachten \mathbb{R}^n . Das innere \mathring{A} einer Menge A ist die Menge aller Punkte $p \in A$ für die es eine offene ϵ -Kugel $U_{\epsilon}(p)$ gibt, welche ganz in O liegt (d.h. \mathring{A} ist die Vereinigung aller offenen Teilmengen von A). Der R and ∂A von A ist die Menge $\overline{A} \setminus \mathring{A}$.

- 1. Skizziere für die folgenden Teilmengen des \mathbb{R}^2 jeweils das Innere \mathring{A} , den Abschluss \overline{A} sowie den Rand ∂A :
 - (a) $A = U_1(0)$
 - (b) $A = (-1, 2] \times [1, 3)$
 - (c) $A = \{(x,0) \mid x \neq 0\}$
 - (d) $A = \{(x,0) \mid x \in \mathbb{Q}\}$
 - (e) $A = \mathbb{Q}^2$
- 2. Beweise die folgenden Inklusionen:
 - (a) $\mathring{A} \subset A \subset \overline{A}$
 - (b) $\mathring{A} \cap \partial A = \emptyset$
 - (c) $A \cup \partial A = \overline{A}$

G 15 Integrierbarkeit

Gebe ein Beispiel von zwei Riemann-integrierbaren Funktionen f und g derart, dass $f \circ g$ nicht Riemann-integrierbar ist.

Hausübung

H13 Minkowskische Ungleichung (2 Punkte)

Zeige:

$$\left(\sum_{k=1}^{n} \left(a_k + b_k\right)^2\right)^{1/2} \le \left(\sum_{k=1}^{n} a_k^2\right)^{1/2} + \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}.$$

Hinweis: Verwende die Cauchy-Schwarzsche Ungleichung.

H14 Französische Eisenbahnmetrik (3 Punkte)

Definition: Sei X eine beliebige Menge. Eine Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik, wenn für beliebige Elemente x, y und z von X die folgenden axiomatischen Bedingungen erfüllt sind:

- 1. d(x,x) = 0 (identische Punkte haben Abstand 0),
- 2. $d(x,y) = 0 \Rightarrow x = y$ (nichtidentische Punkte haben nicht Abstand 0),
- 3. d(x,y) = d(y,x) (Symmetrie),
- 4. $d(x,y) \le d(x,z) + d(z,y)$ (Dreiecksungleichung).

Aufgabe: Betrachte \mathbb{R}^2 zusammen mit folgender, oft als französische Eisenbahnmetrik, bezeichneten Metrik

$$d_{SNCF}\left(x,\;y\right):=\left\{\begin{array}{ll} |x-y| & \text{falls } x=\lambda y \text{ für ein } \lambda>0\\ |x|+|y| & \text{sonst.} \end{array}\right.$$

- Zeige, dass d_{SNCF} tatsächlich eine Metrik ist.
- Erkläre die Namensgebung? Wo liegt Paris?
- Skizziere $U_R(x)$ für $x \neq 0$. Welche beiden Fälle sind dabei zu unterscheiden?

H 15 Kompaktheit im \mathbb{R}^n (4 Punkte)

Zeige: Eine Teilmenge $A \subset \mathbb{R}^n$ ist genau dann kompakt, wenn jede Folge $(a_n)_{n \in \mathbb{N}}$ mit Folgengliedern $a_n \in A$ eine in A konvergente Teilfolge besitzt.