Lineare Algebra II 6. Tutoriumsblatt

Fachbereich Mathematik Prof. Jan H. Bruinier Claudia Alfes Markus Schwagenscheidt Sommersemester 2013 10.07.2013

Gruppenübung

Aufgabe G1 (Wiederholung zu Bilinearformen und quadratischen Formen) Sei V ein endlichdimensionaler K-Vektorraum mit Charakteristik $\neq 2$.

Definition 1: Eine Abbildung $\beta: V \times V \to K$ heißt *Bilinearform*, wenn sie in beiden Argumenten K-linear ist, d.h.

- $\beta(\lambda x + \mu y, z) = \lambda \beta(x, z) + \mu \beta(y, z)$ für alle $x, y, z \in V$ und $\lambda, \mu \in K$,
- $\beta(x, \gamma z + \delta w) = \gamma \beta(x, z) + \delta \beta(x, w)$ für alle $x, z, w \in V$ und $\gamma, \delta \in K$.

Definition 2: Eine Abbildung $q: V \to K$ heißt quadratische Form, falls

- $q(ax) = a^2 q(x)$ für alle $x \in V$ und $a \in K$,
- Die Zuordnung $(x, y) \mapsto q(x + y) q(x) q(y)$ ist eine Bilinearform.

Die Abbildung $(x, y) \mapsto q(x + y) - q(x) - q(y)$ heißt auch die zu q gehörige Bilinearform.

Bemerkungen:

· Per Definition kann man aus jeder quadratischen Form eine Bilinearform konstruieren, nämlich

$$(x, y) \mapsto q(x + y) - q(x) - q(y).$$

Diese ist stets symmetrisch.

Man kann aus jeder (nicht notwendigerweise symmetrischen) Bilinearform β eine quadratische Form Q(x) := β(x,x) gewinnen. Im Allgemeinen ist β nicht gleich der zu Q gehörigen Bilinearform.
Beispiel: Sei β(x,y) eine nicht-symmetrische Bilinearform und Q(x) = β(x,x). Dann ist die zu Q gehörige Bilinearform gegeben durch

$$Q(x + y) - Q(x) - Q(y) = \beta(x + y, x + y) - \beta(x, x) - \beta(y, y)$$

= \beta(x, x) + \beta(x, y) + \beta(y, x) + \beta(y, y) - \beta(x, x) - \beta(y, y)
= \beta(x, y) + \beta(y, x),

und ist also eine symmetrische Bilinearform. Sie kann daher nicht mit eta übereinstimmen.

Definition 3: Sei β eine symmetrische Bilinearform und $B = \{b_1, \dots, b_n\}$ eine Basis von V. Die symmetrische Matrix

$$G = \begin{pmatrix} \beta(b_1, b_1) & \dots & \beta(b_1, b_n) \\ \vdots & & \vdots \\ \beta(b_n, b_1) & \dots & \beta(b_n, b_n) \end{pmatrix}$$

heißt *Gram-Matrix von* β oder auch *Strukturmatrix von* β bzgl. der Basis B. Ist q eine quadratische Form, so besitzt q eine zugehörige Bilinearform β . Die *Gram-Matrix von* q definieren wir als die Gram-Matrix von β .

Bemerkungen:

- Zur Berechnung der Gram-Matrix einer quadratischen Form q muss man zuerst die zugehörige Bilinearform q(x + y) q(x) q(y) bestimmen.
- Schreibe $[x]_B \in K^n$ für die Koordinaten von $x \in V$ bzgl. der Basis B. Dann gilt

$$\beta(x,y) = [x]_B^T G[y]_B.$$

Nach Wahl einer Basis B werden also Rechnungen mit Bilinearformen zu Matrix-Rechnungen.

- Achtung: Wir benutzen quadratische Matrizen nun zur Beschreibung zweier grundsätzlich verschiedener Dinge:
 - Lineare Abbildungen: $x \mapsto Ax$.
 - Bilinearformen/quadratische Formen: $(x, y) \mapsto x^T A y$.

So hängt z.B. die Bedeutung von *Diagonalisierung* davon ab, ob wir *A* als Darstellungsmatrix eines Endomorphismus oder einer Bilinearform verstehen:

- Diagonalisierung linearer Abbildungen: Finde Matrix S, so dass $S^{-1}AS$ diagonal ist. Dies ist nicht immer möglich (vergleiche Spektralsatz/Jordansche Normalform). Bestimmung von S erfordert im Allgemeinen die Bestimmung der Eigenwerte und einer Basis aus Eigenvektoren.
- Diagonalisierung von Bilinearformen: Finde Matrix S, so dass S^TAS diagonal ist. Das ist immer möglich und mit dem symmetrischen Gauß-Algorithmus über \mathbb{R} sehr einfach.

Aufgabe G2 (Diagonalisierung von Bilinearformen)

Satz Sei V ein Vektorraum über einem Körper K und $\beta: V \times V \to K$ eine Bilinearform. Dann ist β diagonalisierbar, d.h. es gibt eine Basis $B = \{b_1, \ldots, b_n\}$ von V mit $\beta(b_i, b_i) = 0$ für $i \neq j$.

Das bedeutet, die Gram-Matrix von β hat bzgl. B Diagonalgestalt. Über die Diagonaleinträge sagt der Satz nichts aus. Man kann die Diagonaleinträge im Allgemeinen (z.B. über \mathbb{R}) nicht auf 1 normieren.

Bestimmung der Diagonalgestalt über \mathbb{R} : Benutze den symmetrischen Gauß-Algorithmus. Führe eine elementare Zeilenumformung wie beim normalen Gauß-Algorithmus durch, und wiederhole *genau denselben* Schritt für die Spalten. Führe zusätzlich in einer Einheitsmatrix *nur die Zeilenoperationen* durch, um die Basiswechselmatrix S mit SAS^T diagonal zu finden.

Beispiel:

Die Diagonalmatrix steht im letzten Schritt links, die Basiswechselmatrix S rechts.

Übung: Überlegen Sie sich, warum der Algorithmus funktioniert, und warum man auf der linken Seite Zeilen- und Spaltenumformungen, auf der rechten Seite aber nur Zeilenumformungen durchführen muss. Was ändert sich, wenn man auf der rechten Seite nur Spaltenumformungen macht?

Aufgabe G3 (Wiederholung zu isotropen Vektoren und hyperbolischen Ebenen) Sei (V,q) ein quadratischer Raum.

Definition:

- Ein Vektor $v \in V$ heißt isotrop, wenn q(v) = 0 gilt, und sonst anisotrop.
- Der Raum V heißt isotrop, wenn er einen isotropen Vektor enthält, und sonst anisotrop.
- Der Raum *V* heißt total isotrop, wenn q(v) = 0 für alle $v \in V$.

Bemerkung: Ist $v \in V$ isotrop, also q(v) = 0, so gilt auch $\beta(v, v) = 0$. Somit ist $v \in V \cap V^{\perp}$, d.h. "v steht senkrecht auf sich selbst".

Definition: Ein 2-dimensionaler quadratischer Raum, der eine Basis e, f hat mit q(e) = q(f) = 0 und $\beta(e, f) = 1$,

heißt hyperbolische Ebene. Seine Strukturmatrix ist $\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right)$.

Satz: Sei (V,q) nicht-ausgeartet. Ist $u \in V$ isotrop, so gibt es einen isotropen Vektor $v \in V$ mit $\beta(u,v)=1$, so dass $H=\operatorname{Lin}(u,v)$ eine hyperbolische Ebene ist mit $V=H\oplus W$ als orthogonale direkte Summe für einen nicht-ausgearteten Unterraum W.

Induktiv folgt, dass V eine orthogonale direkte Summe $V=H_1\oplus\cdots\oplus H_m\oplus W$ mit anisotropem W ist.