4 Type-2 Theory of Effectivity

Definition 4.1. a) A (possibly partial) multifunction $f: \subseteq X \rightrightarrows Y$ is a subset of $X \times Y$. $\operatorname{dom}(f):=\{x \in X \mid \exists y \in Y:(x, y) \in f\}$ and $f(x):=\{y \in Y \mid(x, y) \in f\}$.
b) A Type-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and an unbounded work tape. It computes a (possibly partial) function $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$.
c) A representation of a set X is a partial surjective mapping $\alpha: \subseteq\{0,1\}^{\omega} \rightarrow X$. We call $\bar{\sigma} \in \alpha$ an α-name of $\alpha(\bar{\sigma})$. A point $x \in X$ is α-computable if it has a decidable α-name.
d) Fix representations α of X and β of Y and a (possibly partial and multivalued) function $f: \subseteq X \rightrightarrows Y . A(\alpha, \beta)-r e a l i z e r$ of f is a (partial but single-valued) function $F: \subseteq\{0,1\}^{\omega} \rightarrow$ $\{0,1\}^{\omega}$ with $f(\alpha(\bar{\sigma})) \ni \beta(F(\bar{\sigma}))$ for every $\bar{\sigma} \in \operatorname{dom}(F):=\{\bar{\sigma} \mid \alpha(\bar{\sigma}) \in \operatorname{dom}(f)\}$.
e) A function as in d) is (α, β)-computable if it has a computable (α, β)-realizer. It is (α, β)-continuous if it has a continuous realizer.
f) We say that $U \subseteq X$ is $\alpha-$ r.e. if there exists a Turing machine which terminates precisely on input of all α-names of $\vec{x} \in U$ and diverges on all α-names of $\vec{x} \in X \backslash U$.

Example 4.2 a) Define a ρ-name* of $x \in \mathbb{R}$ to be a sequence $a_{n} \in \mathbb{Z}$ (encoded in binary) such that $\left|x-a_{n} / 2^{n+1}\right| \leq 2^{-n}$.
b) Define a ρ_{C}-name of $x \in \mathbb{R}$ to be two sequences $q_{n}, \varepsilon_{n} \in \mathbb{Q}$ such that $\left|x-q_{n}\right|<\varepsilon_{n} \rightarrow 0$.
 a $\rho_{>- \text {name }}$ of $x \in \mathbb{R}$ is a sequence $c_{n} \in \mathbb{Z}$ with $\inf _{n} c_{n} / 2^{n+1}=x$.
d) Define a ρ_{n}-name of $x \in \mathbb{R}$ to be a sequence $a_{n} \in \mathbb{Z}$ such that $\lim _{n} a_{n} / 2^{n+1}=x$.
e) Define a v-name of $y \in \mathbb{N}$ to be the string $1^{y} 0^{\omega}$. Define a v_{b}-name of $y \in \mathbb{N}$ to be the string $\left(b_{0}, 0, b_{1}, 0, \ldots, b_{n-1}, 0,1^{\omega}\right)$ where $y=b_{0}+2 b_{1}+\cdots+2^{n-1} b_{n-1}+2^{n}-1$.

Theorem 4.3. a) Every (oracle-)computable $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$ is continuous.
b) To every continuous $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$, there exists an oracle relative to which F becomes computable.
c) Every oracle-computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is continuous!
d) To every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ there is an oracle relative to which f becomes computable.
e) Every (relatively) $\rho-$ r.e. set $U \subseteq \mathbb{R}$ is open.
f) Every open $U \subseteq \mathbb{R}$ is relatively $\rho-$ r.e.
g) The identity id : $\mathbb{N} \rightarrow \mathbb{N}$ is both ($\mathrm{v}, \mathrm{v}_{\mathrm{b}}$)-computable and $\left(\mathrm{v}_{\mathrm{b}}, \mathrm{v}\right)$-computable.

4.1 Constructing with, and Comparing, Representations

Definition 4.4. a) Write $\alpha \preceq \beta$ if id : $X \rightarrow X$ is (α, β)-computable.
b) Let α_{i} be representations for $X_{i}, i \in I \subseteq \mathbb{N}$, and $\langle\cdot \mid \cdot\rangle: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ a computable surjective pairing function. Define $\left(\sigma_{m}\right)_{m}$ to be a $\left(\prod_{i \in I} \alpha_{i}\right)$-name of $\left(x_{i}\right)_{i} \in \prod_{i} X_{i}$ iff $\left(\sigma_{\langle i, n\rangle}\right)_{n}$ is an α_{i}-name of $x_{i} \in X_{i}$ for every $i \in I$.
c) For representations α, β of X let $\alpha \sqcap \beta:=\left.(\alpha \times \beta)\right|^{\Delta_{X}}$, where $\Delta_{X}:=\{(x, x) \mid x \in X\}$.

[^0]d) A name of a continuous partial $F: \subseteq\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$ is a monotone $\hat{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ (enumerating its table of arguments and values as some $f \in\{0,1\}^{\omega}$) with $\left.f_{\omega}\right|_{\operatorname{dom}(F)}=F$.
e) Fix representations α of X and β of Y. The representation $[\alpha \rightarrow \beta]$ of the set $R_{\alpha, \beta}[X, Y]$ of all (α, β)-realizable total $g: X \rightarrow Y$ is defined as follows: $A[\alpha \rightarrow \beta]$-name of g is a name of an (α, β)-realizer of g.
f) For multifunctions $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Y \rightrightarrows Z$, their composition is defined as
\[

$$
\begin{equation*}
g \circ f:=\{(x, z) \mid x \in X, z \in Z, f(x) \subseteq \operatorname{dom}(g), \exists y \in Y:(x, y) \in f \wedge(y, z) \in g\} \tag{1}
\end{equation*}
$$

\]

Proposition 4.5. a) Let α, β, γ denote representations of X, Y, Z, respectively. If $f: \subseteq X \rightrightarrows Y$ is (α, β)-computable and $g: \subseteq Y \rightrightarrows Z$ is (β, γ)-computable, then their composition $g \circ f$ is ($\alpha, \gamma)$-computable.
b) For $\alpha \preceq \alpha^{\prime}$ and $\beta \preceq \beta^{\prime},\left[\alpha^{\prime} \rightarrow \beta\right] \preceq\left[\alpha \rightarrow \beta^{\prime}\right]$.
c) Let α be a representation of X. Then $\alpha^{\omega} \preceq[v \rightarrow \alpha] \preceq \alpha^{\omega}$.
d) Fix representations α of X and β of Y and γ of $R_{\alpha, \beta}[X, Y]$. $R_{\alpha, \beta}[X, Y] \times X \ni(g, x) \mapsto g(x) \in Y$ is $(\gamma \times \alpha, \beta)$-computable iff $\gamma \preceq[\alpha \rightarrow \beta]$.
e) Fix representations α of X and β of Y and γ of Z. Then type conversion

$$
\begin{equation*}
R_{\alpha \times \beta, \gamma}[X \times Y, Z] \times X \ni(g, x) \mapsto(Y \ni y \mapsto g(x, y) \in Z) \in R_{\beta, \gamma}[Y, Z] \tag{2}
\end{equation*}
$$

is well-defined and $([\alpha \times \beta \rightarrow \gamma] \times \alpha,[\beta \rightarrow \gamma])$-computable.
f) Also the converse conversion

$$
\begin{aligned}
R_{\alpha,[\beta-\gamma}\left[X, R_{\beta, \gamma}[Y, Z]\right] \ni(X \ni x & \left.\mapsto g(x, \cdot) \in R_{\beta, \gamma}[Y, Z]\right) \\
& \mapsto(X \times Y \ni(x, y) \mapsto g(x, y) \in Z) \in R_{\alpha \times \beta, \gamma}[X \times Y, Z]
\end{aligned}
$$

is well-defined and $([\alpha \rightarrow[\beta \rightarrow \gamma]],[\alpha \times \beta \rightarrow \gamma])$-computable.

4.2 Representing real functions and closed subsets

Definition 4.6. a) The representation $\left[\widehat{\rho^{d} \rightarrow \boldsymbol{\rho}}\right]$ of $f \in C\left(\mathbb{R}^{d}\right)$ is defined as follows: A name is a double sequence $P_{n, m} \in \mathbb{D}\left[X_{1}, \ldots, X_{d}\right]$ with $\left|f(\vec{x})-P_{n, m}(\vec{x})\right| \leq 2^{-n}$ for all $\|\vec{x}\| \leq m$.
b) A nonempty closed set $A \subseteq \mathbb{R}^{d}$ is computable if the function

$$
\begin{equation*}
\operatorname{dist}_{A}: \mathbb{R}^{d} \ni \vec{x} \mapsto \min \{\|\vec{x}-\vec{a}\|: \vec{a} \in A\} \in \mathbb{R} \tag{3}
\end{equation*}
$$

is computable. $A \psi^{d}$-name of $A \in \mathcal{A}^{(d)}$ is a $\left[\rho^{d} \rightarrow \rho\right]$-name of dist $_{A}$, where $\mathcal{A}^{(d)}$ denotes the space of nonempty closed subsets of \mathbb{R}^{d}.
c) $A \psi_{<}^{d}$-name of A is a $\left(\prod_{m \in \mathbb{N}} \rho^{d}\right)$-name of some sequence $\vec{x}_{m} \in A$ dense in A.
d) $A \psi_{>}^{d}$-name of A are two sequences $\vec{q}_{n} \in \mathbb{Q}^{d}$ and $\varepsilon_{n} \in \mathbb{Q}$ such that

$$
\begin{equation*}
\mathbb{R}^{d} \backslash A=\bigcup_{n} B\left(\vec{q}_{n}, \varepsilon_{n}\right) \quad \text { where } \quad B(\vec{x}, r):=\{\vec{y}:\|\vec{x}-\vec{y}\|<r\} . \tag{4}
\end{equation*}
$$

Theorem 4.7. a) It holds $\rho \preceq \boldsymbol{\rho}_{<} \sqcap \rho_{>} \preceq \rho_{\mathrm{C}} \preceq \rho$ and $\left[\boldsymbol{\rho}^{d} \rightarrow \boldsymbol{\rho}\right] \preceq\left[\rho^{d} \rightarrow \boldsymbol{\rho}_{<}\right] \sqcap\left[\rho^{d} \rightarrow \rho_{>}\right] \preceq\left[\rho^{d} \rightarrow \boldsymbol{\rho}\right]$.
b) It holds $R_{\rho^{d}, \rho}\left[\mathbb{R}^{d}, \mathbb{R}\right]=C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and $\left.\left[\widehat{\rho^{d} \rightarrow \rho}\right] \preceq\left[\rho^{d} \rightarrow \rho\right] \preceq \widehat{\rho^{d} \rightarrow \rho}\right]$
c) Every $\left(\rho, \rho_{<}\right)$-computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is lower semi-continuous.
d) A set $A \in \mathcal{A}^{(d)}$ is $\psi_{>}^{d}$-computable iff $\mathbb{R}^{d} \backslash A$ is ρ^{d}-r.e.
e) Let $\|\cdot\|$ in Equation (4) denote any fixed computable norm.

Let $\|\cdot\|^{\prime}$ denote some other norm on \mathbb{R}^{d} with induced representation $\psi^{\prime \prime}$. Then i) $\psi_{>}^{d} \preceq \psi_{>}^{\prime d} \quad$ and ii) $\psi_{<}^{d} \preceq \psi_{<}^{\prime d}$.
f) It holds $\psi^{d} \preceq \psi_{<}^{d} \sqcap \psi_{>}^{d} \preceq \psi^{d}$. Moreover A is $\psi_{<}^{d}$-computable iff dist_{A} is $\left(\rho^{d}, \rho_{>}\right)$-computable; and A is ψ^{d}-computable iff dist_{A} is $\left(\rho^{d}, \rho_{<}\right)$-computable.
g) Union $\mathcal{A}^{(d)} \times \mathcal{A}^{(d)} \ni(A, B) \mapsto A \cup B \in \mathcal{A}^{(d)}$ is $\left(\psi^{d} \times \psi^{d}, \psi^{d}\right)$-computable;
but intersection is not.
h) Closed image $C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right) \times \mathcal{A}^{(d)} \ni(f, A) \mapsto \overline{f[A]} \in \mathcal{A}^{(k)}$ is $\left(\left[\rho^{d} \rightarrow \rho^{k}\right] \times \psi_{<}^{d}, \psi_{<}^{k}\right)$-computable.
j) Preimage $C\left(\mathbb{R}^{d}, \mathbb{R}^{k}\right) \times \mathcal{A}^{(k)} \ni(f, B) \mapsto f^{-1}[B] \in \mathcal{A}^{(d)}$ is $\left(\left[\rho^{d} \rightarrow \rho^{k}\right] \times \psi_{>}^{k}, \psi_{>}^{d}\right)$-computable.
k) $\left\{A \in \mathcal{A}^{(d)}: A \cap[0,1]^{d}=\emptyset\right\}$ is ψ^{d}-r.e.

6 Real Complexity Theory

6.2 Parameterized Type-2 Function Complexity

Definition 6.1. a) A partial function $F: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ is computable in time $t: \mathbb{N} \rightarrow \mathbb{N}$ if a Type2 Machine can, given $\bar{\sigma} \in \operatorname{dom}(F)$, produce $\bar{\tau}=F(\bar{\sigma})$ sucht that the n-th symbol of $\bar{\tau}$ appears within $t(n)$ steps.
b) For spaces X and Y with representations α and β, a partial multivalued $f: \subseteq X \rightrightarrows Y$ is computable in time $t(n)$ if it admits an $(\alpha, \beta)-$ realizer $F: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ computable in time $t(n)$.

Example 6.2 a) If $F: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ is computable in time t, it has t as modulus of continuity.
b) If $f:[0 ; 1] \rightarrow[0 ; 1]$ is $\left(\rho_{\mathrm{C}}, \rho\right)$-computable in time t for some $t: \mathbb{N} \rightarrow \mathbb{N}$, f is constant.
c) Every computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is $\left(\rho, \rho_{\mathrm{C}}\right)$-computable in quadratic time.
d) The following C^{∞} 'pulse' function is computable in polynomial time:

$$
[-1 ; 1] \ni x \mapsto \exp \left(-\frac{x^{2}}{1-x^{2}}\right), \quad[-1 ; 1] \not \supset x \mapsto 0
$$

e) If $F: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ is computable and $\operatorname{dom}(F)$ compact, then F is computable in some recursive time bound $t: \mathbb{N} \rightarrow \mathbb{N}$ depending on the output precision n only.
f) Inversion $\left[2^{-K} ; 1\right] \ni x \mapsto 1 / x$ is (ρ, ρ)-computable in time polynomial in $n+K$.

6.3 Second-Order Representations

For $L>0$ and for metric spaces (X, d) and (Y, e) let
$\operatorname{Lip}_{L}(X, Y):=\left\{f: X \rightarrow Y: e\left(f(x), f\left(x^{\prime}\right)\right) \leq L \cdot d(x, y)\right\}, \quad \operatorname{Lip}(X, Y):=\bigcup_{L>0} \operatorname{Lip}_{L}(X, Y)$.
We may omit Y in case $Y=\mathbb{R}$.

Problem 6.3 a) According to Example $6.2 a)$, the evaluation operator $(F, \overline{\boldsymbol{\sigma}}) \mapsto F(\overline{\boldsymbol{\sigma}})$ admits no upper running time bound depending on the output precision n only.
b) Moreover, even restricted to (the compact set of) non-expansive $F:\{0,1\}^{\omega} \rightarrow\{0,1\}^{\omega}$, the encoding of $F=f_{\omega}$ via the table of values of $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ makes evaluation computable in exponential time but no better.
c) In fact the class $\operatorname{Lip}_{1}([0 ; 1],[0 ; 1])$ of 1-Lipschitz $f:[0 ; 1] \rightarrow[0 ; 1]$ does not admit a representation rendering evaluation $(f, x) \mapsto f(x)$ computable in subexponential time.

Fig. 1. Encoding the binary strings 1011 and 1001 into 1-Lipschitz functions f, g with $\|f-g\|$ not too small

Note that an implementation of the evaluation operator (e.g. in iRRAM) would not reasonably be provided with a function argument f as an infinite binary string but via 'oracle' access to approximate dyadic evaluation queries

$$
\mathbb{Z} \times \mathbb{N} \ni\left(a, 2^{n}\right) \Leftrightarrow b \in \mathbb{N} \text { s.t. }\left|f\left(a / 2^{n+1}\right)-b / 2^{n+1}\right| \leq 1 / 2^{n}
$$

Definition 6.4. a) An oracle Type-2 Machine $\mathcal{M}^{\Psi}{ }^{\Psi}$ may write onto its query tape some $\vec{w} \in \Sigma^{*}$ which, when entered the designated query state, will be replaced with $\vec{v}:=\psi(\vec{w})$.
(We implicitly employ some linear-time bicomputable self-delimited encoding on this tape such as $\left(w_{1}, \ldots, w_{n}\right) \mapsto 1 w_{1} 1 w_{2} \ldots 1 w_{n} 0$.)
b) $\mathcal{M}^{?}$ computes a partial mapping $\tilde{F}: \subseteq\left(\Sigma^{*}\right)^{\Sigma^{*}} \rightarrow\left(\Sigma^{*}\right)^{\Sigma^{*}}$ if, for every $\psi \in \operatorname{dom}(\tilde{F})$, \mathcal{N}^{ψ} on input $\vec{v} \in \Sigma^{*}$ produces $\tilde{F}(\psi)(\vec{v}) \in \Sigma^{*}$ and terminates.
c) Let $\mathrm{LM} \subsetneq\left(\Sigma^{*}\right)^{\Sigma^{*}}$ denote the set of all total functions $\psi: \Sigma^{*} \rightarrow \Sigma^{*}$ length-monotone in the sense of verifying

$$
\begin{equation*}
|\vec{v}| \leq|\vec{w}| \quad \Rightarrow \quad|\psi(\vec{v})| \leq|\psi(\vec{w})| . \tag{5}
\end{equation*}
$$

Write $|\psi|: \mathbb{N} \rightarrow \mathbb{N}$ for the (thus well-defined) mapping $|\vec{w}| \mapsto|\psi(\vec{w})|$.
d) A second-order representation for a space X is a surjective partial mapping $\tilde{\xi}: \subseteq \mathrm{LM} \rightarrow X$.

Example 6.5 a) Any ordinary representation $\xi: \subseteq\{0,1\}^{\omega} \rightarrow X$ induces a second-order representation $\tilde{\xi}$ as follows: Whenever $\bar{\sigma}$ is a $\xi_{-n a m e ~ o f ~}^{x}$, then $\psi: \Sigma^{*} \ni \vec{v} \mapsto \sigma_{|\vec{v}|} \in \Sigma$ is a $\tilde{\xi}_{- \text {name }}$ of said x.
b) (Re-)define a $\tilde{\rho}$-name of $x \in \mathbb{R}$ to be a length-monotone mapping $\psi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ s.t. $\left|x-\frac{\operatorname{bin}(\psi(\vec{w}))}{2^{|\vec{w}|+1}}\right| \leq 2^{-|\vec{w}|}$ for all \vec{w}.
c) Define a second-order representation $\rho^{\mathbb{D}}$ of $C[0 ; 1]$ as follows: $\psi \in \operatorname{LM}$ is a $\rho^{\mathbb{D}}$-name of $f \in C[0 ; 1]$ if, for all $\vec{w} \in \Sigma^{*}$, it holds

$$
\begin{equation*}
\left|\frac{\operatorname{bin}(\Psi(\vec{w}))}{2^{|\vec{w}|+1}}-f\left(\frac{\operatorname{bin}(\vec{w})}{2^{|\vec{w}|+1}}\right)\right| \leq 2^{-|\vec{w}|} \tag{6}
\end{equation*}
$$

d) Define a second-order representation $\rho^{\mathbb{D}} \sqcap L$ of $\operatorname{Lip}[0 ; 1]$ by saying that, whenever ψ is a $\rho^{\mathbb{D}}$-name of $f \in \operatorname{Lip}_{2^{\ell}}[0 ; 1]$, then $\zeta: \Sigma^{*} \ni \vec{w} \mapsto 1^{\ell} 0 \circ \psi(\vec{w}) \in \Sigma^{*}$ is a $\rho^{\mathbb{D}} \sqcap$ L-name of f.
e) Define a $\widetilde{\rho \rightarrow \rho]-n a m e e^{\star \star}} \psi$ of $f \in C[0 ; 1]$ to be a mapping $\Sigma^{*} \ni \vec{w} \mapsto 1^{\mu(|\vec{w}|)} 0 \psi(\vec{w}) \in \Sigma^{*}$, where ψ denotes a $\rho^{\mathbb{D}}$-name of f and $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is a modulus of uniform continuity to it.

How 'long' are these names asymptotically? Relate $|\psi|(n)$ to quantitative properties of f. What is $|\psi|$ for names ψ w.r.t. a second-order representation induced by a first-order one?

6.4 Second-Order Polynomial-Time Complexity

Note that an oracle query $\vec{w} \mapsto \vec{v}:=\psi(\vec{w})$ according to Definition 6.4 b) may return a (much) longer answer for one argument ψ than for another ψ^{\prime}. So in order to be able to even read such a reply, we have to consider as 'polynomial' a running time bound that depends on both n and $|\psi|$. The former being an integer and the latter an integer function, suggests

Definition 6.6. a) A second-order polynomial $P=P(n, \lambda)$ is a term composed from variable symbol n, unary function symbol $\lambda()$, binary function symbols + and \times, and positive integer constants.
b) Let $T: \mathbb{N} \times \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ be arbitrary. Oracle machine \mathcal{M} ? computing $\tilde{F}: \subseteq \mathrm{LM} \rightarrow \mathrm{LM}$ according to Definition 6.4 operates in time T if, for every $\psi \in \operatorname{dom}(\tilde{F})$ and every $\vec{v} \in \Sigma^{*}, \mathcal{M}^{\Psi}$ on input \vec{v} produces $F(\psi)(\vec{v})$ and terminates within at most $T(|\vec{v}|,|\psi|)$ steps.
c) For second-order representations $\tilde{\xi}$ of X and \tilde{v} of Y, a (possibly partial and multivalued) function $f: \subseteq X \rightrightarrows Y$ is $(\tilde{\xi}, \tilde{v})$-computable in time T iff f has a $(\tilde{\xi}, \tilde{v})$-realizer \tilde{F} computable in this time.
d) Second-order polytime computability means computability in time P for some second-order polynomial P.

Computations on 'long' names ψ are thus allotted more time and still considered polynomial.
Example 6.7 a) $\lambda\left(n+\lambda\left(n^{2}+3 n\right) \cdot n \cdot \lambda^{3}(n)\right) \cdot n$ is a second-order polynomial.
b) Second-order polynomials are closed under both kinds of composition:

$$
\begin{equation*}
(Q \circ P)(n, \lambda):=Q(P(n, \lambda), \lambda) \quad \text { and } \quad(Q \bullet P)(n, \lambda):=Q(n, P(\cdot, \lambda)) \tag{7}
\end{equation*}
$$

c) Addition and multiplication are $2^{\text {nd }}$-order polytime $\tilde{\rho}$-computable on \mathbb{R}; but $x \mapsto e^{x}$ is not.
d) Fix ordinary representations ξ of X and v of Y with induced second-order representations $\tilde{\xi}$ and \tilde{v}. Then $f: \subseteq X \rightrightarrows Y$ is polytime (ξ, v)-computable iff it is second-order polytime $(\tilde{\xi}, \tilde{v})-$ computable.

[^1]e) Evaluation $\operatorname{Lip}[0 ; 1] \times[0 ; 1] \ni(f, x) \mapsto f(x)$ is $\left(\rho^{\mathbb{D}} \sqcap L \times \tilde{\rho}, \tilde{\rho}\right)$-computable in second-order polytime.
f) Evaluation $C[0 ; 1] \times[0 ; 1] \ni(f, x) \mapsto f(x)$ is $(\widetilde{(\widetilde{\rho} \rightarrow \boldsymbol{\rho}]} \times \tilde{\rho}, \tilde{\rho})$-computable in second-order polytime.

Definition 6.8. a) Write $\operatorname{PRED} \subseteq \mathrm{LM}$ for the class of $\psi: \Sigma^{*} \rightarrow\{0,1\}$.
b) Let \mathcal{P}^{2} denote the class of $\tilde{F}: \subseteq \mathrm{LM} \rightarrow$ PRED computable by an oracle Type- 2 Machine in second-order polytime.
c) Let $\mathcal{N P} \mathcal{P}^{2}$ denote the class of $\tilde{F}: \subseteq \mathrm{LM} \rightarrow$ PRED computable by a non-deterministic oracle Type-2 Machine in second-order polytime.
d) We may identify a $\tilde{F}: \subseteq \mathrm{LM} \rightarrow$ PRED with the set $\left\{(\psi, \vec{v}): \psi \in \operatorname{dom}(\tilde{F}), \vec{v} \in \Sigma^{*}, \tilde{F}(\psi, \vec{v})=1\right\}$ considered as a promise (second-order decision) problem.

Example 6.9 The following problem EXIST ${ }^{2}$ belongs to $\mathcal{N} \mathcal{P}^{2}$ but not to \mathcal{P}^{2} :

$$
\left\{(P, \vec{x}): P \in \operatorname{PRED}, \exists \vec{y} \in \Sigma^{|\vec{x}|}: P(\langle\vec{x}, \vec{y}\rangle)=1\right\}
$$

6.5 Reductions

Definition 6.10. Fix spaces A, B, X, Y with respective (ordinary or second-order) representations α, β, ξ, v. Consider (possibly multivalued but total) functions $f: A \rightrightarrows B$ and $g: X \rightrightarrows Y$.
a) Call f computably $(\alpha, \beta, \xi, v)-r e d u c i b l e ~ t o ~ g i f ~ t h e r e ~ e x i s t ~ m u l t i-f u n c t i o n s ~ r: A \rightrightarrows X,(\alpha, \xi)-$ computable, and $s: Y \times A \rightrightarrows B,(v \times \alpha, \beta)$-computable, such that for all $a \in A$ it holds $s(g(r(a)), a) \subseteq f(a)$.
b) The above functions r and s constitute a (second-order) polytime reduction if they are (second-order) polytime computable.

Example 6.11 Consider the following multivalued mappings:

- LLPO $:\{0,1\}^{\omega} \ni \overline{\boldsymbol{\sigma}} \Leftrightarrow\left\{\begin{array}{cl}\left\{0^{\omega}\right\} & : \exists!n: \sigma_{n}=1, \text { n even } \\ \left\{1^{\omega}\right\} & : \exists!n: \sigma_{n}=1 \text {, } n \text { odd } \\ \left\{0^{\omega}, 1^{\omega}\right\}: & \forall n: \sigma_{n}=0 \\ \{ \} \quad: \exists n \neq m: \sigma_{n}=1=\sigma_{m}\end{array}\right.$
- $\mathrm{B}_{\mathrm{I}}:\{(a, b): 0 \leq a \leq b \leq 1\} \ni(a, b) \Leftrightarrow y \in[a, b] \subseteq[0 ; 1]$
- IVT : $\{f:[0 ; 1] \rightarrow[-1 ; 1]$ continuous s.t. $f(0)<0<f(1)\} \ni f \Leftrightarrow x \in f^{-1}[0] \subseteq[0 ; 1]$
a) Every $\tilde{F} \in \mathcal{N P}{ }^{2}$ is second-order polytime reducible to EXIST^{2}.
b) MAX : $C[0 ; 1] \rightarrow C[0 ; 1]$ is 2 nd-order polytime $(\widetilde{\rho \rightarrow \rho}], \widetilde{\rho} \rightarrow \rho]$, id, id $)$-reducible to EXIST^{2}
c) and EXIST^{2} is second-order polytime $\left.\left.(\mathrm{id}, \mathrm{id}, \widetilde{\rho \rightarrow \rho}], \widetilde{\rho} \rightarrow \mathrm{\rho}\right]\right)$-reducible to $\left.\mathrm{MAX}\right|_{C^{\infty}[0 ; 1]}$.
d) LLPO is not computable;
B_{I} is not $\left(\rho_{<} \times \rho_{>}, \rho\right)$-computable and IVT is not $([\rho \rightarrow \rho], \rho)$-computable.
e) LLPO is (id, $\mathrm{id}, \rho_{<} \times \rho_{>}, \rho$)-reducible to B_{I}.
f) IVT is $\left([\rho \rightarrow \rho], \rho, \rho_{<} \times \rho_{>}, \rho\right)$-reducible to B_{I}.
g) B_{I} is $\left(\rho_{<} \times \rho_{>}, \rho,[\rho \rightarrow \rho], \rho\right)-$ reducible to IVT .

7 A View on the Practical Side: iRRAM

- Restricted to $f:[0 ; 1] \rightarrow \mathbb{R}$ with $f(0)<0<f(1)$ and a unique root, this root can be found computably: How?
- REAL semantics provided by iRRAM via automatic re-iteration
- multivalued intrinsic functions;
e.g. bool bound (const REAL\& x, const long k) where

$$
\text { bound }(x, k)=\left\{\begin{array}{cl}
\text { true } & :|x| \leq 2^{k-2} \\
\text { false } & :|x|>2^{k} \\
\text { true or false } & : 2^{k} \geq|x|>2^{k-2}
\end{array}\right.
$$

- lazy Booleans and branching on multivalued tests

References

1. V. Brattka, G. Gherardi: "Effective Choice and Boundedness Principles in Computable Analysis", pp.73-117 in The Bulletin of Symbolic Logic vol.17:1 (2011).
2. V. Brattka, P. Hertling, K. Weihrauch: "Tutorial on Computable Analysis", pp.425-491 in New Computational Paradigms (2008).
3. A. KAWAMURA, S.A. Cook: "Complexity Theory for Operators in Analysis", ACM Transactions in Computation Theory vol.4:2 (2012), article 5.
4. A. Kawamura, N. MüLler, C. Rösnick, M. Ziegler: "Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from $\mathcal{N P}$-hard to Polytime", arXiv: 1211.4974 (2012).
5. N. MÜLLER: "The iRRAM: Exact Arithmetic in C++", pp.222-252 in Springer LNCS vol. 2064 (2001); see also http: //irram.uni-trier. de and http://www.cs.ru.nl/~spitters/completeness.html
\#muller
6. A. PaUly, M. ZIEGLER: "Relative Computability and Uniform Continuity of Relations", arXiv:1105. 3050
7. K. Weihrauch: "Computable Analysis", Springer (2000).
8. M. Ziegler, V. Brattka: "Computability in Linear Algebra"; pp.187-211 in Theoretical Computer Science vol. 326 (2004).
9. M. ZIEgler: "Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability", pp.1108-1139 in Annals of Pure and Applied Logic vol.163:8 (2012).

[^0]: * This is subtly different from the representation denoted by ρ in [7]

[^1]: ** in [3] called a δ_{\square}-name

