4 Type-2 Theory of Effectivity

Definition 4.1. a) A (possibly partialmultifunction f :C X =Y is a subsetof X Y.
dom(f) :={xeX|3IyeY:(xy) ef} and f(x):={yeY|(xy) e f}.

b) AType-2 Machine has an infinite read-only input tape, an infinite one-way atitppe, and
an unbounded work tape. It computes a (possibly partialgtion F :C {0,1}® — {0,1}«.

c) Arepresentation of a set X is a partial surjective mapping.C {0,1}® — X. We callo € a
ano—name of a(o). A point xe X is a—computable if it has a decidablex—name.

d) Fix representationst of X andf of Y and a (possibly partial and multivalued) function
f:CX =Y. A(a,B)-realizer of f is a (partial but single-valued) function £ {0,1}* —
{0,1}* with f(a(o)) > B(F(0)) for everyo € dom(F) := {o | a(0) € dom(f)}.

e) A function as in d) iga, B)—computable if it has a computabléa, 3)—realizer.

Itis (a,B)—continuous if it has a continuous realizer.

f) We say that UC X is a—r.e. if there exists a Turing machine which terminates precisaly
input of alla—names ok € U and diverges on ali—names ok € X \ U.

Example 4.2 a) Define gp—nhamé of x € R to be a sequence,& Z (encoded in binary)
such thatx — a, /2" < 27",

b) Define apc—name of X R to be two sequences @, € Q such thaix—gn| < €, — 0.

c) Ap-—name of xc R is a sequencee Z with sup,bp/2"* = x;
a p-—name of xc R is a sequencec= Z with infncn/2n+1 =X.

d) Define aopp—name of xc R to be a sequence,a Z such thalimpa, /2" = x.

e) Define av—name of y= N to be the strindlY 0. Define avp—name of ye N to be the string
(bp,0,b1,0,...,bn_1,0,1%) where y=bp+2b; +--- + 2n71bn—1+ 2" —1.

Theorem 4.3. a) Every (oracle-)computable - {0,1}“ — {0,1}% is continuous.
b) To every continuous FEC {0,1}* — {0,1}%,
there exists an oracle relative to which F becomes competabl
c) Every oracle-computable:fl0; 1] — R is continuous!
d) To every continuous:fR — R there is an oracle relative to which f becomes computable.
e) Every (relativelyp—r.e. set UC R is open.
f) Every open UC R is relativelyp—r.e.
g) The identityid : N — N is both(v,vp)—computable andvy, v)—computable.

4.1 Constructing with, and Comparing, Representations

Definition 4.4. a) Writea < pifid : X — X is (a, 3)—computable.

b) Leta; be representations foriXi € | C N, and(- | -) : N x N — N a computable surjective
pairing function. Defingom),, to be a([ic ai)—name of(x); € i % iff (0in), is an
aj—name of xe X for every i€ I.

c) For representations, 3 of X letanp = (a x B)}AX, whereAy := {(x,X) | x € X}.

* This is subtly different from the representation denotegliry [7]



d) Aname of a continuous partial EC {0,1}® — {0,1}% is a monotond : {0,1}* — {0,1}*
(enumerating its table of arguments and values as somd @, 1}©) with fw}dom(F) =F.

e) Fix representationa of X andp of Y. The representatioja — 3] of the set R g[X,Y] of all
(a,p)—realizable total g X — Y is defined as follows: A — B]-name of g is a name of an
(a,B)—realizer of g.

f) For multifunctions :.C X =Y and gC Y = Z, theircomposition is defined as

gof = {(x2)|xeX,zeZ,f(x) Cdom(g), IyeY:(xy)e fA(v,2eg} . (1)

Proposition 4.5. a) Leta, 3,y denote representations of,X Z, respectively. If fC X =Y
is (a,B)—computable and gC Y = Z is (3, y)—computable, then their compositior ¢ is
(a,y)—computable.

b) Fora <a’andB <@/, [0’ —B] < [a—B.

c) Leta be a representation of X. Ther®’ < [v—a] < a®.

d) Fix representations of X andp of Y andy of Ry g[X,Y].

Ry g[X,Y] x X 3 (9,X) = g(x) €Y is(yx a,B)—computable iffy < [a — f].

e) Fix representationa of X andf3 of Y andy of Z. Then type conversion

RC(XB,V[X XY7 Z] xX 3 <g7 X) = (Y > y'_> g(X,y) S Z) € RB,V[Y7 Z] (2)

is well-defined and[a x B— Y] x a, [B—y])-computable.
f) Also the converse conversion

Ro gy [X,ReylY.Z]] 3 (X3 x—9(x-) € Rgy[Y,Z])
= (X XY 3 (xy)—g(Xy) €Z) € RyxpylX xY,Z]

is well-defined and [a — [B—V]], [0 x B—Yy])—computable.

4.2 Representing real functions and closed subsets

Definition 4.6. a) The representatio{p/d—Tp] of f € C(RY) is defined as follows: A name is a
double sequencen € D[Xy, ..., Xg] with | f(X) — Phm(X)| < 27" for all ||X]| <m.

b) A nonempty closed set@RY is computabléf the function
dista:RY > X > min{|x—&]:d€A} € R (3)

is computable. A)¥—name of Ac AW is a[p? — p]-name oflist,
whereA(@ denotes the space of nonempty closed subs@&t$.of

c) Ayd—name of A is & [Tmen P9)—name of some sequensge A dense in A.
d) Ayd—name of A are two sequendgse Q9 ande, € Q such that

RINA = B(dnen) where BXr):={y:[X-y||<r} . (4)



Theorem 4.7. a) Itholdsp < p-Mp- < pc < pand[pd—p] < [p9—p-]M[p?—p-] < [p4—p].
b) It holds Ry o[R?, R] = C(R?,R) and [pT~p] < [p?—p] < [pT=p)

c) Every(p, p<)—computable f [0;1] — R is lower semi-continuous.

d) Aset Ac A@ isyd—computable iffR9\ Aisp-re.

e) Let| - || in Equation (4) denote any fixed computable norm.
Let||- ||’ denote some other norm @f with induced representatiop/.

Theni)yd <y and ii)yd < o,

f) It holdsyd < yd riyd < yod.
Moreover A isp—computable iﬁdistA is (p9, p- )—computable;
and A isyd—computable iffdisty is (p9, p<) —computable.

g) UnionA@ x A@ 5 (A B)— AUB e A@ s (g9 x Y9, pd)—computable;
but intersection is not.

h) Closedimage RY,RK) x A@ 5 (f,A) — f[A] € AKX is ([p?— pX] x Y, yX)—computable.
j) Preimage GRY,R¥)x AN 5 (f,B)— f1[B] € A@ is ([pd — p¥] x ¥, yd)—computable.
k) {Ac A9 :AN[0,1]% = 0} isyl-re.

6 Real Complexity Theory

6.2 Parameterized Type-2 Function Complexity

Definition 6.1. a) A partial function F.C Z® — % is computable in time t : N — N if a Type-
2 Machine can, givero € dom(F), producet = F (o) sucht that the n-th symbol ofappears
within t(n) steps.

b) For spaces X and Y with representati@anand, a partial multivalued .C X =Y is com-
putablein time t(n) if it admits an(a, 3)—realizer F:C ¥® — Z® computable in time(n).

Example 6.2 a) If F :C Z® — % is computable in time t, it has t as modulus of continuity.
b) If f :[0;1] — [0;1] is (pc,p)—computable in time t for some N — N, f is constant.

c) Every computable f[0;1] — R is (p, pc)—computable in quadratic time.

d) The following C ‘pulse’ function is computable in polynomial time:

L, 3 xm exp(— 7). LY Fx—0

e) If F:C 2® — 3% is computable andom(F) compact, then F is computable in some
recursive time bound:tN — N depending on the output precision n only.
f) Inversion[27X;1] 3 x— 1/x is (p, p)-computable in time polynomial inHAK

6.3 Second-Order Representations
ForL > 0 and for metric spacegs,d) and(Y,e) let
Lip (X,Y) = {f:X=Y:e(f(x),f(X)) <L-d(xy)}, Lip(X)Y) = UL>OLipL(X,Y) :

We may omitY in caseY = R.



Problem 6.3 a) According to Example 6.2a), the evaluation operdf@o) — F (o) admits no
upper running time bound depending on the output precisionin

b) Moreover, even restricted to (the compact set of) noraesipe F: {0,1}*° — {0,1}%, the
encoding of F= f,, via the table of values of {0,1}" — {0,1}" makes evaluation com-
putable in exponential time but no better.

c) In fact the classip, ([0;1],[0;1]) of 1-Lipschitz f: [0; 1] — [0; 1] does not admit a represen-
tation rendering evaluatio(f, x) — f(x) computable in subexponential time.

Fig. 1. Encoding the binary stringf011 and1001 into 1-Lipschitz functionsf, g with || f — g|| not too small

Note that an implementation of the evaluation operator. j@.RRAM) would not reasonably
be provided with a function argumeriitas an infinite binary string but via ‘oracle’ access to
approximate dyadic evaluation queries

ZxN > (a2") = beNs.t.|f(a/2") —p/2" <1/2" .

Definition 6.4. a) Anoracle Type-2 Machine MY may write onto its query tape soniec Z*
which, when entered the designated query state, will begpl withv := ((W).
(We implicitly employ some linear-time bicomputable sgelimited encoding on this tape
such agwy,...,Wp) — 1wy lw,...1w,0.)

b) M? computes a partial mappingF :C (Z*)% — (Z*)% if, for everyy € dom(F), MY¥ on
inputV € =* produces- () (V) € =* and terminates.

c) LetLM C (Z*)%" denote the set of all total functions: >* — X* length-monotone in the
sense of verifying

Vi< W = W) < QW) . (5)

Write || : N — N for the (thus well-defined) mapping| — [P (W)]. .
d) Asecond-order representation for a space X is a surjective partial mappiggC LM — X.

Example 6.5 a) Any ordinary representatiofi:C {0,1}* — X induces a second-order repre-
sentatiorg as follows: Wheneves is a§-name of x, thep : Z* 5 Vi gjy € Z is aé-name
of said x.

b) (Re-)define §—name of x R to be a length-monotone mappigy {0,1}* — {0,1}* s.t.

bin (W®)) | _ o .
‘x— W’ < 2=V for all w.



c) Define a second-order representatiph of C[0;1] as follows:{ € LM is a pP-name of
f € C[0;1] if, for all w e Z*, it holds

’bin(w(vT/)) s <bin(W>)’ <ol (6)

2|W|+1 2|Wi+-1

d) Define a second-order representatipA rL of Lip[0;1] by saying that, whenevap is a
pP—name of fc Lip,[0;1], thenZ : =* > W+ 10 o P(W) € =* is ap® rL—name of f.

e) Define dp—p]-name* Y of f € C[0;1] to be a mapping* > W — 1HW)oyw) € =*,
wherey denotes @”—name of f and pN — N is a modulus of uniform continuity to it.

How ‘long’ are these names asymptotically? Relgtgn) to quantitative properties df. What
is |Y| for namesy w.r.t. a second-order representation induced by a firstravde?

6.4 Second-Order Polynomial-Time Complexity

Note that an oracle queny — V := (W) according to Definition 6.4b) may return a (much)
longer answer for one argumahpthan for anothey/. So in order to be able to even read such a
reply, we have to consider as ‘polynomial’ a running time tthat depends on bothand|y|.
The former being an integer and the latter an integer funcsaggests

Definition 6.6. a) A second-order polynomial P= P(n,A) is a term composed from variable
symbol n, unary function symb®{), binary function symbols- and x, and positive integer
constants.

b) Let T: N x NN — N be arbitrary. Oracle machin&(? computing- :C LM — LM according
to Definition 6.4 operates itime T if, for everyy € dom(F) and every € >*, MY on input
V produces K) (V) and terminates within at most(|V|, |y|) steps.

c) For second-order reprgsentatioﬁsof X andi of Y, a (possibly partial and multivalued)
function f:C X =Y is(§,0)—computable intime T iff f has@&,0)-realizerF computable
in this time.

d) Second-order polytimeomputability means computability in time P for some seeanaler
polynomial P.

Computations on ‘long’ namaj are thus allotted more time and still considered polynomial

Example 6.7 a) A(n+A(n?+3n)-n-A3(n)) -nis a second-order polynomial.
b) Second-order polynomials are closed unbethkinds of composition:

(QoP)(n,A) := Q(P(n,A),A) and (QeP)(nA) := Q(n,P(-,A)) . (7)

c) Addition and multiplication ar@"-order polytimed—computable ofR; but x> € is not. .
d) Fix ordinary representation of X andu of Y with induced second-order representatigns
and0. Then f:C X =Y is polytimg &, v)—computable iff it is second-order polytinte 0)—

computable.

**in [3] called ad,—name



e) EvaluationLip[0;1] x [0;1] > (f,x) — f(x) is (pP ML x p, p)—computable in second-order
polytime.

f) Evaluation GO; 1] x [0;1] 5 (f,x) — f(X) is (p—p] x P, P)—computable in second-order poly-
time.

Definition 6.8. a) WritePREDC LM for the class ofy : ¥* — {0,1}.

b) LetP?2 denote the class df :C LM — PRED computable by an oracle Type-2 Machine in
second-order polytime.

c) Let NP? denote the class df :C LM — PRED computable by a non-deterministic oracle
Type-2 Machine in second-order polytime.

d) We may identify & :C LM — PREDwith the se (¢, V) : ¢ € dom(F), Ve =*, F(,V) =1}
considered as aromise(second-order decision) problem.

Example 6.9 The following problentEXIST? belongs tdNP? but not toP?:
{(PX) : PEPRED, 3yesX: P((xy)) =1}

6.5 Reductions

Definition 6.10. Fix spaces AB, X,Y with respective (ordinary or second-order) represeoiadi
a,B,&,u. Consider (possibly multivalued but total) functionsA=Bandg: X =Y.

a) Call f computably (a,[3,§&,v)—reducible to g if there exist multi-functions:tA = X, (a, &)—
computable, and sY x A = B, (v x a,3)—computable, such that for all @ A it holds

s(g(r(a)),a) C f(a).
b) The above functions r and s constitut¢s@&cond-order) polytime reduction if they are
(second-order) polytime computable.

Example 6.11 Consider the following multivalued mappings:
{0®} :3dIn:on,=1, neven
3 _ w0 = {1°} : 3n:oh=1, nodd
LLPO:{0,1}* 5 0 &= (09,19} : ¥n:on=0
{} :In#mion=1=o0n
- Bi:{(a,b):0<a<b<1} 3 (ab) = yelab] C [0;]]
— IVT: {f:[0;1] — [-1;1] continuous s.t. f0) <0< f(1)} > f & xe f~1[0] C [0;1]

a) EveryF € NP? is second-order polytime reducible EXIST?.
b) MAX : C[0;1] — CJ[0; 1] is 2nd-order polytime[p—p],[p—p},id, id )—reducible toEXIST?
c) andEXIST? is second-order polytiméid, id,[p—p],[p—p])—reducible taMAX lc=[0:1-
d) LLPOis not computable;
B is not(p- x p-,p)—computable antVT is not([p—> p],p)—computable.
e) LLPOiis (id,id, p< x p>,p)—reducible toB,.
f) IVTis ([p—pl,p,p- x p-,p)—reducible toB,.
g) Byis (p< x p-,p,[p—p], p)—reducible taVT.



7 A View on the Practical Side:i RRAM

— Restricted tof : [0;1] — R with f(0) < 0< f(1) and auniqueroot,

this root can be found computably: How?

— REALsemantics provided blRRAMvia automatic re-iteration
— multivalued intrinsic functions;

e.g.bool bound (const REAL& x, const long k) where
true D|x| < 2K2
bound (x,k) = false  :|x| >2¢

true or false : 2K> [x| > 2k~2

— lazy Booleans and branching on multivalued tests
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