4 Type-2 Theory of Effectivity

- **Definition 4.1.** *a)* A (possibly partial) multifunction $f :\subseteq X \Rightarrow Y$ is a subset of $X \times Y$. dom $(f) := \{x \in X \mid \exists y \in Y : (x, y) \in f\}$ and $f(x) := \{y \in Y \mid (x, y) \in f\}$.
- b) A Type-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and an unbounded work tape. It computes a (possibly partial) function $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$.
- c) A representation of a set X is a partial surjective mapping $\alpha :\subseteq \{0,1\}^{\omega} \to X$. We call $\bar{\sigma} \in \alpha$ an α -name of $\alpha(\bar{\sigma})$. A point $x \in X$ is α -computable if it has a decidable α -name.
- d) Fix representations α of X and β of Y and a (possibly partial and multivalued) function $f :\subseteq X \rightrightarrows Y$. $A(\alpha, \beta)$ -realizer of f is a (partial but single-valued) function $F :\subseteq \{0, 1\}^{\omega} \rightarrow \{0, 1\}^{\omega}$ with $f(\alpha(\bar{\sigma})) \ni \beta(F(\bar{\sigma}))$ for every $\bar{\sigma} \in \text{dom}(F) := \{\bar{\sigma} \mid \alpha(\bar{\sigma}) \in \text{dom}(f)\}$.
- e) A function as in d) is (α, β) -computable if it has a computable (α, β) -realizer. It is (α, β) -continuous if it has a continuous realizer.
- f) We say that $U \subseteq X$ is α -r.e. if there exists a Turing machine which terminates precisely on input of all α -names of $\vec{x} \in U$ and diverges on all α -names of $\vec{x} \in X \setminus U$.
- **Example 4.2** a) Define a ρ -name^{*} of $x \in \mathbb{R}$ to be a sequence $a_n \in \mathbb{Z}$ (encoded in binary) such that $|x a_n/2^{n+1}| \le 2^{-n}$.
- b) Define a $\rho_{\mathbb{C}}$ -name of $x \in \mathbb{R}$ to be two sequences $q_n, \varepsilon_n \in \mathbb{Q}$ such that $|x q_n| < \varepsilon_n \to 0$.
- c) A $\rho_{<}$ -name of $x \in \mathbb{R}$ is a sequence $b_n \in \mathbb{Z}$ with $\sup_n b_n/2^{n+1} = x$; a $\rho_{>}$ -name of $x \in \mathbb{R}$ is a sequence $c_n \in \mathbb{Z}$ with $\inf_n c_n/2^{n+1} = x$.
- d) Define a ρ_n -name of $x \in \mathbb{R}$ to be a sequence $a_n \in \mathbb{Z}$ such that $\lim_n a_n/2^{n+1} = x$.
- e) Define a v-name of $y \in \mathbb{N}$ to be the string $1^y 0^\omega$. Define a v_b -name of $y \in \mathbb{N}$ to be the string $(b_0, 0, b_1, 0, \dots, b_{n-1}, 0, 1^\omega)$ where $y = b_0 + 2b_1 + \dots + 2^{n-1}b_{n-1} + 2^n 1$.

Theorem 4.3. *a)* Every (oracle-)computable $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ *is continuous.*

- b) To every continuous $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$, there exists an oracle relative to which F becomes computable.
- *c)* Every oracle-computable $f : [0,1] \rightarrow \mathbb{R}$ is continuous!
- *d)* To every continuous $f : \mathbb{R} \to \mathbb{R}$ there is an oracle relative to which f becomes computable.
- e) Every (relatively) ρ -r.e. set $U \subseteq \mathbb{R}$ is open.
- *f*) Every open $U \subseteq \mathbb{R}$ is relatively ρ -r.e.
- g) The identity $id : \mathbb{N} \to \mathbb{N}$ is both (v, v_b) -computable and (v_b, v) -computable.

4.1 Constructing with, and Comparing, Representations

Definition 4.4. *a)* Write $\alpha \leq \beta$ if id : $X \to X$ is (α, β) -computable.

- b) Let α_i be representations for X_i , $i \in I \subseteq \mathbb{N}$, and $\langle \cdot | \cdot \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ a computable surjective pairing function. Define $(\sigma_m)_m$ to be a $(\prod_{i \in I} \alpha_i)$ -name of $(x_i)_i \in \prod_i X_i$ iff $(\sigma_{\langle i,n \rangle})_n$ is an α_i -name of $x_i \in X_i$ for every $i \in I$.
- c) For representations α, β of X let $\alpha \sqcap \beta := (\alpha \times \beta) |_{\Delta_X}^{\Delta_X}$, where $\Delta_X := \{(x, x) \mid x \in X\}$.

 $^{^{\}star}$ This is subtly different from the representation denoted by ρ in [7]

- *d)* A name of a continuous partial $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is a monotone $\hat{f} : \{0,1\}^* \to \{0,1\}^*$ (enumerating its table of arguments and values as some $f \in \{0,1\}^{\omega}$) with $f_{\omega}|_{\text{dom}(F)} = F$.
- e) Fix representations α of X and β of Y. The representation $[\alpha \rightarrow \beta]$ of the set $R_{\alpha,\beta}[X,Y]$ of all (α,β) -realizable total $g: X \rightarrow Y$ is defined as follows: $A \ [\alpha \rightarrow \beta]$ -name of g is a name of an (α,β) -realizer of g.
- *f)* For multifunctions $f :\subseteq X \rightrightarrows Y$ and $g :\subseteq Y \rightrightarrows Z$, their composition is defined as

$$g \circ f := \left\{ (x,z) \mid x \in X, z \in Z, f(x) \subseteq \operatorname{dom}(g), \exists y \in Y : (x,y) \in f \land (y,z) \in g \right\} .$$
(1)

Proposition 4.5. a) Let α, β, γ denote representations of X, Y, Z, respectively. If $f :\subseteq X \Rightarrow Y$ is (α, β) -computable and $g :\subseteq Y \Rightarrow Z$ is (β, γ) -computable, then their composition $g \circ f$ is (α, γ) -computable.

- *b)* For $\alpha \leq \alpha'$ and $\beta \leq \beta'$, $[\alpha' \rightarrow \beta] \leq [\alpha \rightarrow \beta']$.
- *c)* Let α be a representation of *X*. Then $\alpha^{\omega} \leq [\nu \rightarrow \alpha] \leq \alpha^{\omega}$.
- d) Fix representations α of X and β of Y and γ of $R_{\alpha,\beta}[X,Y]$.
- $R_{\alpha,\beta}[X,Y] \times X \ni (g,x) \mapsto g(x) \in Y \text{ is } (\gamma \times \alpha,\beta) computable \text{ iff } \gamma \preceq [\alpha \rightarrow \beta].$
- e) Fix representations α of X and β of Y and γ of Z. Then type conversion

$$R_{\alpha \times \beta, \gamma}[X \times Y, Z] \times X \ni (g, x) \mapsto (Y \ni y \mapsto g(x, y) \in Z) \in R_{\beta, \gamma}[Y, Z]$$

$$(2)$$

is well-defined and $([\alpha \times \beta \rightarrow \gamma] \times \alpha, [\beta \rightarrow \gamma])$ *–computable.*

f) Also the converse conversion

$$\begin{aligned} R_{\alpha,[\beta \to \gamma]} \big[X, R_{\beta,\gamma}[Y,Z] \big] \; \ni \; \big(X \ni x \mapsto g(x,\cdot) \in R_{\beta,\gamma}[Y,Z] \big) \\ & \mapsto \; \big(X \times Y \ni (x,y) \mapsto g(x,y) \in Z \big) \; \in \; R_{\alpha \times \beta,\gamma}[X \times Y,Z] \end{aligned}$$

is well-defined and $([\alpha \rightarrow [\beta \rightarrow \gamma]], [\alpha \times \beta \rightarrow \gamma])$ -computable.

4.2 Representing real functions and closed subsets

Definition 4.6. *a)* The representation $[\widehat{\rho^d} \rightarrow \widehat{\rho}]$ of $f \in C(\mathbb{R}^d)$ is defined as follows: A name is a double sequence $P_{n,m} \in \mathbb{D}[X_1, \dots, X_d]$ with $|f(\vec{x}) - P_{n,m}(\vec{x})| \leq 2^{-n}$ for all $||\vec{x}|| \leq m$.

b) A nonempty closed set $A \subseteq \mathbb{R}^d$ is computable if the function

$$\operatorname{dist}_{A}: \mathbb{R}^{d} \ni \vec{x} \mapsto \min\left\{ \|\vec{x} - \vec{a}\| : \vec{a} \in A \right\} \in \mathbb{R}$$
(3)

is computable. A Ψ^d -name of $A \in \mathcal{A}^{(d)}$ is a $[\rho^d \rightarrow \rho]$ -name of dist_A, where $\mathcal{A}^{(d)}$ denotes the space of nonempty closed subsets of \mathbb{R}^d .

- c) $A \psi_{\leq}^{d}$ -name of A is a $(\prod_{m \in \mathbb{N}} \rho^{d})$ -name of some sequence $\vec{x}_{m} \in A$ dense in A.
- d) A ψ^d_{\geq} -name of A are two sequences $\vec{q}_n \in \mathbb{Q}^d$ and $\varepsilon_n \in \mathbb{Q}$ such that

$$\mathbb{R}^d \setminus A = \bigcup_n B(\vec{q}_n, \varepsilon_n) \quad \text{where} \quad B(\vec{x}, r) := \{ \vec{y} : \|\vec{x} - \vec{y}\| < r \} \quad .$$
(4)

Theorem 4.7. *a)* It holds $\rho \leq \rho_{<} \sqcap \rho_{>} \leq \rho_{C} \leq \rho$ and $[\rho^{d} \rightarrow \rho] \leq [\rho^{d} \rightarrow \rho_{<}] \sqcap [\rho^{d} \rightarrow \rho_{>}] \leq [\rho^{d} \rightarrow \rho_{>}]$.

- b) It holds $R_{\rho^d,\rho}[\mathbb{R}^d,\mathbb{R}] = C(\mathbb{R}^d,\mathbb{R})$ and $[\rho^d \to \rho] \preceq [\rho^d \to \rho] \preceq [\rho^d \to \rho]$
- c) Every $(\rho, \rho_{<})$ -computable $f : [0; 1] \rightarrow \mathbb{R}$ is lower semi-continuous.
- *d)* A set $A \in \mathcal{A}^{(d)}$ is ψ^d_{\geq} -computable iff $\mathbb{R}^d \setminus A$ is ρ^d -r.e.
- e) Let $\|\cdot\|$ in Equation (4) denote any fixed computable norm. Let $\|\cdot\|'$ denote some other norm on \mathbb{R}^d with induced representation $\psi_{>}^{\prime d}$. Then i) $\psi_{>}^d \preceq \psi_{>}^{\prime d}$ and ii) $\psi_{<}^d \preceq \psi_{<}^{\prime d}$.
- f) It holds $\psi^d \leq \psi^d_{\leq} \sqcap \psi^d_{\geq} \leq \psi^d$. Moreover A is ψ^d_{\leq} -computable iff dist_A is (ρ^d, ρ_{\geq}) -computable; and A is ψ^d_{\geq} -computable iff dist_A is (ρ^d, ρ_{\leq}) -computable.
- g) Union $\mathcal{A}^{(d)} \times \mathcal{A}^{(d)} \ni (A, B) \mapsto A \cup B \in \mathcal{A}^{(d)}$ is $(\psi^d \times \psi^d, \psi^d)$ -computable; but intersection is not.
- h) Closed image $C(\mathbb{R}^d,\mathbb{R}^k) \times \mathcal{A}^{(d)} \ni (f,A) \mapsto \overline{f[A]} \in \mathcal{A}^{(k)}$ is $([\rho^d \to \rho^k] \times \psi^d_{<}, \psi^k_{<})$ -computable.
- *j)* Preimage $C(\mathbb{R}^d, \mathbb{R}^k) \times \mathcal{A}^{(k)} \ni (f, B) \mapsto f^{-1}[B] \in \mathcal{A}^{(d)}$ is $([\rho^d \to \rho^k] \times \psi^k_>, \psi^d_>)$ -computable.
- k) $\{A \in \mathcal{A}^{(d)} : A \cap [0,1]^d = \emptyset\}$ is $\psi^d_{>}$ -r.e.

6 Real Complexity Theory

6.2 Parameterized Type-2 Function Complexity

- **Definition 6.1.** *a)* A partial function $F :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ is computable in time $t : \mathbb{N} \to \mathbb{N}$ if a Type-2 Machine can, given $\bar{\sigma} \in \text{dom}(F)$, produce $\bar{\tau} = F(\bar{\sigma})$ such that the *n*-th symbol of $\bar{\tau}$ appears within t(n) steps.
- b) For spaces X and Y with representations α and β , a partial multivalued $f :\subseteq X \rightrightarrows Y$ is computable in time t(n) if it admits an (α, β) -realizer $F :\subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ computable in time t(n).

Example 6.2 a) If $F :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ is computable in time t, it has t as modulus of continuity.

- b) If $f : [0;1] \to [0;1]$ is (ρ_C, ρ) -computable in time t for some $t : \mathbb{N} \to \mathbb{N}$, f is constant.
- c) Every computable $f : [0;1] \to \mathbb{R}$ is (ρ, ρ_C) -computable in quadratic time.
- *d)* The following C^{∞} 'pulse' function is computable in polynomial time:

$$[-1;1] \ni x \mapsto \exp\left(-\frac{x^2}{1-x^2}\right), \quad [-1;1] \not\ni x \mapsto 0$$

- *e)* If $F :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ is computable and dom(F) compact, then F is computable in some recursive time bound $t : \mathbb{N} \to \mathbb{N}$ depending on the output precision n only.
- *f)* Inversion $[2^{-K}; 1] \ni x \mapsto 1/x$ is (ρ, ρ) -computable in time polynomial in n + K.

6.3 Second-Order Representations

For L > 0 and for metric spaces (X, d) and (Y, e) let

$$\operatorname{Lip}_{L}(X,Y) := \{f: X \to Y : e(f(x), f(x')) \leq L \cdot d(x,y)\}, \quad \operatorname{Lip}(X,Y) := \bigcup_{L>0} \operatorname{Lip}_{L}(X,Y)$$

We may omit *Y* in case $Y = \mathbb{R}$.

Problem 6.3 *a)* According to Example 6.2a), the evaluation operator $(F, \bar{\sigma}) \mapsto F(\bar{\sigma})$ *admits no upper running time bound depending on the output precision n only.*

- b) Moreover, even restricted to (the compact set of) non-expansive $F : \{0,1\}^{\omega} \to \{0,1\}^{\omega}$, the encoding of $F = f_{\omega}$ via the table of values of $f : \{0,1\}^n \to \{0,1\}^n$ makes evaluation computable in exponential time but no better.
- c) In fact the class Lip₁ ([0;1], [0;1]) of 1-Lipschitz $f : [0;1] \rightarrow [0;1]$ does not admit a representation rendering evaluation $(f,x) \mapsto f(x)$ computable in subexponential time.

Fig. 1. Encoding the binary strings 1011 and 1001 into 1-Lipschitz functions f, g with ||f - g|| not too small

Note that an implementation of the evaluation operator (e.g. in iRRAM) would *not* reasonably be provided with a function argument f as an infinite binary string but via 'oracle' access to approximate dyadic evaluation queries

$$\mathbb{Z} \times \mathbb{N} \ni (a, 2^n) \Rightarrow b \in \mathbb{N} \text{ s.t. } \left| f(a/2^{n+1}) - b/2^{n+1} \right| \le 1/2^n$$

Definition 6.4. *a)* An oracle Type-2 Machine \mathcal{M}^{Ψ} may write onto its query tape some $\vec{w} \in \Sigma^*$ which, when entered the designated query state, will be replaced with $\vec{v} := \Psi(\vec{w})$.

(We implicitly employ some linear-time bicomputable self-delimited encoding on this tape such as $(w_1, \ldots, w_n) \mapsto 1 w_1 1 w_2 \ldots 1 w_n 0$.)

- b) $\mathcal{M}^{?}$ computes a partial mapping $\tilde{F} :\subseteq (\Sigma^{*})^{\Sigma^{*}} \to (\Sigma^{*})^{\Sigma^{*}}$ if, for every $\psi \in \operatorname{dom}(\tilde{F})$, \mathcal{M}^{ψ} on input $\vec{v} \in \Sigma^{*}$ produces $\tilde{F}(\psi)(\vec{v}) \in \Sigma^{*}$ and terminates.
- c) Let $LM \subseteq (\Sigma^*)^{\Sigma^*}$ denote the set of all total functions $\psi : \Sigma^* \to \Sigma^*$ length-monotone in the sense of verifying

$$|\vec{v}| \le |\vec{w}| \Rightarrow |\psi(\vec{v})| \le |\psi(\vec{w})|$$
 (5)

Write $|\Psi| : \mathbb{N} \to \mathbb{N}$ *for the (thus well-defined) mapping* $|\vec{w}| \mapsto |\Psi(\vec{w})|$.

- *d)* A second-order representation for a space X is a surjective partial mapping $\tilde{\xi} :\subseteq LM \to X$.
- **Example 6.5** *a)* Any ordinary representation $\xi :\subseteq \{0,1\}^{\omega} \to X$ induces a second-order representation $\tilde{\xi}$ as follows: Whenever $\bar{\sigma}$ is a ξ -name of x, then $\psi : \Sigma^* \ni \vec{v} \mapsto \sigma_{|\vec{v}|} \in \Sigma$ is a $\tilde{\xi}$ -name of said x.
- b) (Re-)define a $\tilde{\rho}$ -name of $x \in \mathbb{R}$ to be a length-monotone mapping $\psi : \{0,1\}^* \to \{0,1\}^*$ s.t. $\left|x - \frac{\sin\left(\psi(\vec{w})\right)}{2^{|\vec{w}|+1}}\right| \le 2^{-|\vec{w}|}$ for all \vec{w} .

c) Define a second-order representation $\rho^{\mathbb{D}}$ of C[0;1] as follows: $\psi \in LM$ is a $\rho^{\mathbb{D}}$ -name of $f \in C[0;1]$ if, for all $\vec{w} \in \Sigma^*$, it holds

$$\left|\frac{\operatorname{bin}(\Psi(\vec{w}))}{2^{|\vec{w}|+1}} - f\left(\frac{\operatorname{bin}(\vec{w})}{2^{|\vec{w}|+1}}\right)\right| \le 2^{-|\vec{w}|} \quad . \tag{6}$$

- d) Define a second-order representation $\rho^{\mathbb{D}} \sqcap L$ of Lip[0;1] by saying that, whenever ψ is a $\rho^{\mathbb{D}}$ -name of $f \in \text{Lip}_{2^{\ell}}[0;1]$, then $\zeta : \Sigma^* \ni \vec{w} \mapsto 1^{\ell} \circ \psi(\vec{w}) \in \Sigma^*$ is a $\rho^{\mathbb{D}} \sqcap L$ -name of f.
- e) Define a $[\rho \rightarrow \rho]$ -name^{**} ψ of $f \in C[0;1]$ to be a mapping $\Sigma^* \ni \vec{w} \mapsto 1^{\mu(|\vec{w}|)} \circ \psi(\vec{w}) \in \Sigma^*$, where ψ denotes a $\rho^{\mathbb{D}}$ -name of f and $\mu : \mathbb{N} \rightarrow \mathbb{N}$ is a modulus of uniform continuity to it.

How 'long' are these names asymptotically? Relate $|\psi|(n)$ to quantitative properties of f. What is $|\psi|$ for names ψ w.r.t. a second-order representation induced by a first-order one?

6.4 Second-Order Polynomial-Time Complexity

Note that an oracle query $\vec{w} \mapsto \vec{v} := \psi(\vec{w})$ according to Definition 6.4b) may return a (much) longer answer for one argument ψ than for another ψ' . So in order to be able to even read such a reply, we have to consider as 'polynomial' a running time bound that depends on both *n* and $|\psi|$. The former being an integer and the latter an integer function, suggests

- **Definition 6.6.** *a)* A second-order polynomial $P = P(n, \lambda)$ is a term composed from variable symbol n, unary function symbol $\lambda()$, binary function symbols + and ×, and positive integer constants.
- b) Let $T : \mathbb{N} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ be arbitrary. Oracle machine $\mathcal{M}^{?}$ computing $\tilde{F} :\subseteq LM \to LM$ according to Definition 6.4 operates in time T if, for every $\psi \in dom(\tilde{F})$ and every $\vec{v} \in \Sigma^*$, \mathcal{M}^{ψ} on input \vec{v} produces $F(\psi)(\vec{v})$ and terminates within at most $T(|\vec{v}|, |\psi|)$ steps.
- c) For second-order representations $\tilde{\xi}$ of X and \tilde{v} of Y, a (possibly partial and multivalued) function $f :\subseteq X \Longrightarrow Y$ is $(\tilde{\xi}, \tilde{v})$ -computable in time T iff f has a $(\tilde{\xi}, \tilde{v})$ -realizer \tilde{F} computable in this time.
- *d*) Second-order polytime *computability means computability in time P for some second-order polynomial P.*

Computations on 'long' names ψ are thus allotted more time and still considered polynomial.

Example 6.7 a) $\lambda(n + \lambda(n^2 + 3n) \cdot n \cdot \lambda^3(n)) \cdot n$ is a second-order polynomial. b) Second-order polynomials are closed under both kinds of composition:

$$(Q \circ P)(n,\lambda) := Q(P(n,\lambda),\lambda) \quad and \quad (Q \bullet P)(n,\lambda) := Q(n,P(\cdot,\lambda)) .$$
 (7)

- *c)* Addition and multiplication are 2^{nd} -order polytime $\tilde{\rho}$ -computable on \mathbb{R} ; but $x \mapsto e^x$ is not.
- d) Fix ordinary representations ξ of X and v of Y with induced second-order representations ξ and ῦ. Then f :⊆ X ⇒ Y is polytime (ξ, v)–computable iff it is second-order polytime (ξ, ῦ)–computable.

^{**} in [3] called a δ_{\Box} -name

- e) Evaluation Lip[0;1] × [0;1] \ni (f,x) \mapsto f(x) is ($\rho^{\mathbb{D}} \sqcap L \times \tilde{\rho}, \tilde{\rho}$)–computable in second-order polytime.
- *f)* Evaluation $C[0;1] \times [0;1] \ni (f,x) \mapsto f(x)$ is $([\rho \to \rho] \times \tilde{\rho}, \tilde{\rho})$ -computable in second-order polytime.

Definition 6.8. *a)* Write PRED \subseteq LM for the class of ψ : $\Sigma^* \rightarrow \{0, 1\}$.

- b) Let \mathbb{P}^2 denote the class of $\tilde{F} :\subseteq LM \to PRED$ computable by an oracle Type-2 Machine in second-order polytime.
- c) Let \mathbb{NP}^2 denote the class of $\tilde{F} :\subseteq \mathrm{LM} \to \mathrm{PRED}$ computable by a non-deterministic oracle *Type-2 Machine in second-order polytime.*
- *d)* We may identify a $\tilde{F} :\subseteq LM \to PRED$ with the set $\{(\psi, \vec{v}) : \psi \in dom(\tilde{F}), \vec{v} \in \Sigma^*, \tilde{F}(\psi, \vec{v}) = 1\}$ considered as a promise (second-order decision) problem.

Example 6.9 The following problem $EXIST^2$ belongs to NP^2 but not to P^2 :

 $\left\{ (P, \vec{x}) : P \in \mathsf{PRED}, \exists \vec{y} \in \Sigma^{|\vec{x}|} : P(\langle \vec{x}, \vec{y} \rangle) = 1 \right\}$

6.5 Reductions

Definition 6.10. *Fix spaces* A, B, X, Y *with respective (ordinary or second-order) representations* α , β , ξ , υ . *Consider (possibly multivalued but total) functions* $f : A \rightrightarrows B$ *and* $g : X \rightrightarrows Y$.

- a) Call f computably $(\alpha, \beta, \xi, \upsilon)$ -reducible to g if there exist multi-functions $r : A \rightrightarrows X$, (α, ξ) computable, and $s : Y \times A \rightrightarrows B$, $(\upsilon \times \alpha, \beta)$ -computable, such that for all $a \in A$ it holds $s(g(r(a)), a) \subseteq f(a)$.
- b) The above functions r and s constitute a (second-order) polytime reduction if they are (second-order) polytime computable.

Example 6.11 Consider the following multivalued mappings:

$$- \text{ LLPO}: \{0,1\}^{\omega} \ni \bar{\sigma} \Rightarrow \begin{cases} \{0^{\omega}\} : \exists !n : \sigma_n = 1, n \text{ even} \\ \{1^{\omega}\} : \exists !n : \sigma_n = 1, n \text{ odd} \\ \{0^{\omega}, 1^{\omega}\} : \forall n : \sigma_n = 0 \\ \{\} : \exists n \neq m : \sigma_n = 1 = \sigma_m \\ - B_{\mathrm{I}}: \{(a,b) : 0 \le a \le b \le 1\} \ni (a,b) \Rightarrow y \in [a,b] \subseteq [0;1] \\ - \mathrm{IVT}: \{f : [0;1] \rightarrow [-1;1] \text{ continuous s.t. } f(0) < 0 < f(1)\} \ni f \Rightarrow x \in f^{-1}[0] \subseteq [0;1] \end{cases}$$

- a) Every $\tilde{F} \in \mathbb{NP}^2$ is second-order polytime reducible to EXIST^2 .
- b) MAX : $C[0;1] \rightarrow C[0;1]$ is 2nd-order polytime $([\rho \rightarrow \rho], [\rho \rightarrow \rho], id, id)$ -reducible to EXIST²
- c) and EXIST² is second-order polytime $(id, id, [\overrightarrow{\rho \rightarrow \rho}], [\overrightarrow{\rho \rightarrow \rho}])$ -reducible to MAX $|_{C^{\infty}[0;1]}$.
- *d*) LLPO is not computable;
 B_I is not (ρ_< × ρ_>, ρ)-computable and IVT is not ([ρ→ρ], ρ)-computable. *e*) LLPO is (id, id, ρ_< × ρ_>, ρ)-reducible to B_I.
- *f*) IVT is $([\rho \rightarrow \rho], \rho, \rho < \times \rho >, \rho)$ -reducible to B_I.
- g) B_I is $(\rho < \times \rho >, \rho, [\rho \rightarrow \rho], \rho)$ -reducible to IVT.

7 A View on the Practical Side: irram

- Restricted to $f : [0;1] \to \mathbb{R}$ with f(0) < 0 < f(1) and a *unique* root, this root can be found computably: How?
- REAL semantics provided by iRRAM via automatic re-iteration
- multivalued intrinsic functions;

e.g. bool bound (const REAL& x, const long k) where

$$\texttt{bound}(x,k) = \begin{cases} \texttt{true} & : |x| \leq 2^{k-2} \\ \texttt{false} & : |x| > 2^k \\ \texttt{true or false} : 2^k \geq |x| > 2^{k-2} \end{cases}$$

- lazy Booleans and branching on multivalued tests

References

- 1. V. BRATTKA, G. GHERARDI: "Effective Choice and Boundedness Principles in Computable Analysis", pp.73–117 in *The Bulletin of Symbolic Logic* vol. **17:1** (2011).
- 2. V. BRATTKA, P. HERTLING, K. WEIHRAUCH: "Tutorial on Computable Analysis", pp.425–491 in *New Computational Paradigms* (2008).
- 3. A. KAWAMURA, S.A. COOK: "Complexity Theory for Operators in Analysis", ACM Transactions in Computation Theory vol.4:2 (2012), article 5.
- 4. A. KAWAMURA, N. MÜLLER, C. RÖSNICK, M. ZIEGLER: "Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from NP-hard to Polytime", arXiv:1211.4974 (2012).
- 5. N. MÜLLER: "The iRRAM: Exact Arithmetic in C++", pp.222-252 in Springer LNCS vol.2064 (2001); see also http://irram.uni-trier.de and http://www.cs.ru.nl/~spitters/completeness.html\#muller
- 6. A. PAULY, M. ZIEGLER: "Relative Computability and Uniform Continuity of Relations", arXiv:1105.3050
- 7. K. WEIHRAUCH: "Computable Analysis", Springer (2000).
- M. ZIEGLER, V. BRATTKA: "Computability in Linear Algebra"; pp.187–211 in *Theoretical Computer Science* vol.326 (2004).
- 9. M. ZIEGLER: "Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability", pp.1108–1139 in *Annals of Pure and Applied Logic* vol.**163:8** (2012).