
4 Type-2 Theory of Effectivity

Definition 4.1. a) A (possibly partial)multifunction f :⊆ X ⇉Y is a subset of X×Y.
dom( f ) := {x∈ X | ∃y∈Y : (x,y) ∈ f} and f(x) := {y∈Y | (x,y) ∈ f}.

b) AType-2 Machine has an infinite read-only input tape, an infinite one-way output tape, and
an unbounded work tape. It computes a (possibly partial) function F :⊆ {0,1}ω →{0,1}ω.

c) A representation of a set X is a partial surjective mappingα :⊆ {0,1}ω → X. We callσ̄ ∈ α
an α–name of α(σ̄). A point x∈ X is α–computable if it has a decidableα–name.

d) Fix representationsα of X andβ of Y and a (possibly partial and multivalued) function
f :⊆ X ⇉Y. A(α,β)–realizer of f is a (partial but single-valued) function F:⊆ {0,1}ω →
{0,1}ω with f

(

α(σ̄)
)

∋ β
(

F(σ̄)
)

for everyσ̄ ∈ dom(F) := {σ̄ | α(σ̄) ∈ dom( f )}.

e) A function as in d) is(α,β)–computable if it has a computable(α,β)–realizer.
It is (α,β)–continuous if it has a continuous realizer.

f) We say that U⊆ X is α–r.e. if there exists a Turing machine which terminates preciselyon
input of allα–names of~x∈U and diverges on allα–names of~x∈ X \U.

Example 4.2 a) Define aρ–name⋆ of x∈ R to be a sequence an ∈ Z (encoded in binary)
such that|x−an/2n+1| ≤ 2−n.

b) Define aρC–name of x∈ R to be two sequences qn,εn ∈Q such that|x−qn|< εn → 0.
c) A ρ<–name of x∈ R is a sequence bn ∈ Z with supnbn/2n+1 = x;

a ρ>–name of x∈ R is a sequence cn ∈ Z with infncn/2n+1 = x.
d) Define aρn–name of x∈ R to be a sequence an ∈ Z such thatlimnan/2n+1 = x.
e) Define aν–name of y∈ N to be the string1y0ω. Define aνb–name of y∈ N to be the string

(b0,0,b1,0, . . . ,bn−1,0,1ω) where y= b0+2b1+ · · ·+2n−1bn−1+2n−1.

Theorem 4.3. a) Every (oracle-)computable F:⊆ {0,1}ω →{0,1}ω is continuous.
b) To every continuous F:⊆ {0,1}ω →{0,1}ω,

there exists an oracle relative to which F becomes computable.
c) Every oracle-computable f: [0;1]→ R is continuous!
d) To every continuous f: R→R there is an oracle relative to which f becomes computable.
e) Every (relatively)ρ–r.e. set U⊆ R is open.
f) Every open U⊆ R is relativelyρ–r.e.
g) The identityid : N→ N is both(ν,νb)–computable and(νb,ν)–computable.

4.1 Constructing with, and Comparing, Representations

Definition 4.4. a) Writeα � β if id : X → X is (α,β)–computable.
b) Letαi be representations for Xi, i ∈ I ⊆ N, and〈 · | · 〉 : N×N→ N a computable surjective

pairing function. Define(σm)m to be a
(

∏i∈I αi
)

–name of(xi)i ∈ ∏i Xi iff (σ〈i,n〉)n is an
αi–name of xi ∈ Xi for every i∈ I.

c) For representationsα,β of X letα⊓β := (α×β)
∣

∣

∆X , where∆X := {(x,x) | x∈ X}.

⋆ This is subtly different from the representation denoted byρ in [7]



d) A name of a continuous partial F:⊆ {0,1}ω →{0,1}ω is a monotonêf : {0,1}∗ →{0,1}∗

(enumerating its table of arguments and values as some f∈ {0,1}ω) with fω
∣

∣

dom(F)
= F.

e) Fix representationsα of X andβ of Y . The representation[α→β] of the set Rα,β[X,Y] of all
(α,β)–realizable total g: X →Y is defined as follows: A[α→β]–name of g is a name of an
(α,β)–realizer of g.

f) For multifunctions f:⊆ X ⇉Y and g:⊆Y ⇉ Z, theircomposition is defined as

g◦ f :=
{

(x,z)
∣

∣x∈ X,z∈ Z, f (x)⊆ dom(g), ∃y∈Y : (x,y) ∈ f ∧ (y,z) ∈ g} . (1)

Proposition 4.5. a) Let α,β,γ denote representations of X,Y,Z, respectively. If f:⊆ X ⇉ Y
is (α,β)–computable and g:⊆ Y ⇉ Z is (β,γ)–computable, then their composition g◦ f is
(α,γ)–computable.

b) For α � α′ andβ � β′, [α′→β]� [α→β′].
c) Letα be a representation of X. Thenαω � [ν→α]� αω.
d) Fix representationsα of X andβ of Y andγ of Rα,β[X,Y].

Rα,β[X,Y]×X ∋ (g,x) 7→ g(x) ∈Y is(γ×α,β)–computable iffγ � [α→β].
e) Fix representationsα of X andβ of Y andγ of Z. Then type conversion

Rα×β,γ[X×Y,Z]×X ∋ (g,x) 7→
(

Y ∋ y 7→ g(x,y) ∈ Z
)

∈ Rβ,γ[Y,Z] (2)

is well-defined and
(

[α×β→γ]×α, [β→γ]
)

–computable.
f) Also the converse conversion

Rα,[β→γ]
[

X,Rβ,γ[Y,Z]
]

∋
(

X ∋ x 7→ g(x, ·) ∈ Rβ,γ[Y,Z]
)

7→
(

X×Y ∋ (x,y) 7→ g(x,y) ∈ Z
)

∈ Rα×β,γ[X×Y,Z]

is well-defined and
([

α→ [β→γ]
]

, [α×β→γ]
)

–computable.

4.2 Representing real functions and closed subsets

Definition 4.6. a) The representation̂[ρd→ρ] of f ∈C(Rd) is defined as follows: A name is a
double sequence Pn,m ∈ D[X1, . . . ,Xd] with | f (~x)−Pn,m(~x)| ≤ 2−n for all ‖~x‖ ≤ m.

b) A nonempty closed set A⊆ Rd is computableif the function

distA : Rd ∋ ~x 7→ min
{

‖~x−~a‖ :~a∈ A
}

∈ R (3)

is computable. Aψd–name of A∈A(d) is a [ρd→ρ]–name ofdistA,
whereA(d) denotes the space of nonempty closed subsets ofRd.

c) A ψd
<–name of A is a

(

∏m∈Nρd
)

–name of some sequence~xm ∈ A dense in A.

d) A ψd
>–name of A are two sequences~qn ∈Qd andεn ∈Q such that

Rd \A =
⋃

n
B(~qn,εn) where B(~x, r) := {~y : ‖~x−~y‖< r} . (4)



Theorem 4.7. a) It holdsρ� ρ<⊓ρ> � ρC� ρ and[ρd→ρ]� [ρd→ρ<]⊓ [ρd→ρ>]� [ρd→ρ].
b) It holds Rρd,ρ[R

d,R] =C(Rd,R) and ̂[ρd→ρ]� [ρd→ρ]� ̂[ρd→ρ]
c) Every(ρ,ρ<)–computable f: [0;1]→ R is lower semi-continuous.

d) A set A∈A(d) is ψd
>–computable iffRd \A is ρd–r.e.

e) Let‖ · ‖ in Equation (4) denote any fixed computable norm.
Let‖ · ‖′ denote some other norm onRd with induced representationψ′d

> .
Then i)ψd

> � ψ′d
> and ii) ψd

< � ψ′d
< .

f) It holdsψd � ψd
<⊓ψd

> � ψd.
Moreover A isψd

<–computable iffdistA is (ρd,ρ>)–computable;
and A isψd

>–computable iffdistA is (ρd,ρ<)–computable.

g) UnionA(d)×A(d) ∋ (A,B) 7→ A∪B∈A(d) is (ψd×ψd,ψd)–computable;
but intersection is not.

h) Closed image C(Rd,Rk)×A
(d) ∋ ( f ,A) 7→ f [A] ∈A

(k) is ([ρd→ρk]×ψd
<,ψk

<)–computable.

j) Preimage C(Rd,Rk)×A
(k) ∋ ( f ,B) 7→ f−1[B] ∈A

(d) is ([ρd→ρk]×ψk
>,ψd

>)–computable.

k)
{

A∈A
(d) : A∩ [0,1]d = /0} is ψd

>–r.e.

6 Real Complexity Theory

6.2 Parameterized Type-2 Function Complexity

Definition 6.1. a) A partial function F:⊆ Σω → Σω is computable in time t :N→N if a Type-
2 Machine can, given̄σ ∈ dom(F), producēτ = F(σ̄) sucht that the n-th symbol of̄τ appears
within t(n) steps.

b) For spaces X and Y with representationsα andβ, a partial multivalued f:⊆ X ⇉Y is com-
putablein time t(n) if it admits an(α,β)–realizer F :⊆ Σω → Σω computable in time t(n).

Example 6.2 a) If F :⊆ Σω → Σω is computable in time t, it has t as modulus of continuity.
b) If f : [0;1]→ [0;1] is (ρC,ρ)–computable in time t for some t: N→ N, f is constant.
c) Every computable f: [0;1]→ R is (ρ,ρC)–computable in quadratic time.
d) The following C∞ ‘pulse’ function is computable in polynomial time:

[−1;1] ∋ x 7→ exp
(

− x2

1−x2

)

, [−1;1] 6∋ x 7→ 0

e) If F :⊆ Σω → Σω is computable anddom(F) compact, then F is computable in some
recursive time bound t: N→N depending on the output precision n only.

f) Inversion[2−K;1] ∋ x 7→ 1/x is (ρ,ρ)–computable in time polynomial in n+K.

6.3 Second-Order Representations

ForL > 0 and for metric spaces(X,d) and(Y,e) let

LipL(X,Y) :=
{

f : X →Y : e
(

f (x), f (x′)
)

≤ L ·d(x,y)
}

, Lip(X,Y) :=
⋃

L>0
LipL(X,Y) .

We may omitY in caseY = R.



Problem 6.3 a) According to Example 6.2a), the evaluation operator(F, σ̄) 7→ F(σ̄) admits no
upper running time bound depending on the output precision nonly.

b) Moreover, even restricted to (the compact set of) non-expansive F: {0,1}ω → {0,1}ω, the
encoding of F= fω via the table of values of f: {0,1}n → {0,1}n makes evaluation com-
putable in exponential time but no better.

c) In fact the classLip1

(

[0;1], [0;1]
)

of 1-Lipschitz f: [0;1]→ [0;1] does not admit a represen-
tation rendering evaluation( f ,x) 7→ f (x) computable in subexponential time.

Fig. 1. Encoding the binary strings1011 and1001 into 1-Lipschitz functionsf ,g with ‖ f −g‖ not too small

Note that an implementation of the evaluation operator (e.g. in iRRAM) would not reasonably
be provided with a function argumentf as an infinite binary string but via ‘oracle’ access to
approximate dyadic evaluation queries

Z×N ∋ (a,2n) Z⇒ b∈ N s.t.
∣

∣ f (a/2n+1)−b/2n+1
∣

∣≤ 1/2n .

Definition 6.4. a) Anoracle Type-2 Machine Mψ may write onto its query tape some~w∈ Σ∗

which, when entered the designated query state, will be replaced with~v := ψ(~w).
(We implicitly employ some linear-time bicomputable self-delimited encoding on this tape
such as(w1, . . . ,wn) 7→ 1 w11 w2 . . .1 wn0.)

b) M
? computes a partial mappingF̃ :⊆ (Σ∗)Σ∗

→ (Σ∗)Σ∗
if, for everyψ ∈ dom(F̃), Mψ on

input~v∈ Σ∗ producesF̃
(

ψ
)

(~v) ∈ Σ∗ and terminates.
c) Let LM ( (Σ∗)Σ∗

denote the set of all total functionsψ : Σ∗ → Σ∗ length-monotone in the
sense of verifying

|~v| ≤ |~w| ⇒ |ψ(~v)| ≤ |ψ(~w)| . (5)

Write |ψ| : N→ N for the (thus well-defined) mapping|~w| 7→ |ψ(~w)|.
d) Asecond-order representation for a space X is a surjective partial mappingξ̃ :⊆LM →X.

Example 6.5 a) Any ordinary representationξ :⊆{0,1}ω → X induces a second-order repre-
sentationξ̃ as follows: Whenever̄σ is a ξ–name of x, thenψ : Σ∗ ∋~v 7→ σ|~v| ∈ Σ is a ξ̃–name
of said x.

b) (Re-)define ãρ–name of x∈ R to be a length-monotone mappingψ : {0,1}∗ → {0,1}∗ s.t.
∣

∣

∣
x−

bin
(

ψ(~w)
)

2|~w|+1

∣

∣

∣
≤ 2−|~w| for all ~w.



c) Define a second-order representationρD of C[0;1] as follows:ψ ∈ LM is a ρD-name of
f ∈C[0;1] if, for all ~w∈ Σ∗, it holds

∣

∣

∣

∣

bin
(

ψ(~w)
)

2|~w|+1
− f

(

bin(~w)

2|~w|+1

)
∣

∣

∣

∣

≤ 2−|~w| . (6)

d) Define a second-order representationρD ⊓ L of Lip[0;1] by saying that, wheneverψ is a
ρD–name of f∈ Lip2ℓ [0;1], thenζ : Σ∗ ∋ ~w 7→ 1ℓ0 ◦ψ(~w) ∈ Σ∗ is a ρD⊓L–name of f .

e) Define ã[ρ→ρ]–name⋆⋆ ψ of f ∈ C[0;1] to be a mappingΣ∗ ∋ ~w 7→ 1µ(|~w|)0 ψ(~w) ∈ Σ∗,
whereψ denotes aρD–name of f and µ: N→ N is a modulus of uniform continuity to it.

How ‘long’ are these names asymptotically? Relate|ψ|(n) to quantitative properties off . What
is |ψ| for namesψ w.r.t. a second-order representation induced by a first-order one?

6.4 Second-Order Polynomial-Time Complexity

Note that an oracle query~w 7→~v := ψ(~w) according to Definition 6.4b) may return a (much)
longer answer for one argumentψ than for anotherψ′. So in order to be able to even read such a
reply, we have to consider as ‘polynomial’ a running time bound that depends on bothn and|ψ|.
The former being an integer and the latter an integer function, suggests

Definition 6.6. a) A second-order polynomial P= P(n,λ) is a term composed from variable
symbol n, unary function symbolλ(), binary function symbols+ and×, and positive integer
constants.

b) Let T : N×NN →N be arbitrary. Oracle machineM? computingF̃ :⊆ LM → LM according
to Definition 6.4 operates intime T if, for everyψ ∈ dom(F̃) and every~v∈ Σ∗, Mψ on input
~v produces F

(

ψ
)

(~v) and terminates within at most T(|~v|, |ψ|) steps.
c) For second-order representationsξ̃ of X andυ̃ of Y , a (possibly partial and multivalued)

function f :⊆X ⇉Y is(ξ̃, υ̃)–computable in time T iff f has a(ξ̃, υ̃)–realizerF̃ computable
in this time.

d) Second-order polytimecomputability means computability in time P for some second-order
polynomial P.

Computations on ‘long’ namesψ are thus allotted more time and still considered polynomial.

Example 6.7 a) λ
(

n+λ(n2+3n) ·n ·λ3(n)
)

·n is a second-order polynomial.
b) Second-order polynomials are closed underbothkinds of composition:

(

Q◦P
)

(n,λ) := Q
(

P(n,λ),λ
)

and
(

Q•P
)

(n,λ) := Q
(

n,P(·,λ)
)

. (7)

c) Addition and multiplication are2nd-order polytimeρ̃–computable onR; but x 7→ ex is not.
d) Fix ordinary representationsξ of X andυ of Y with induced second-order representationsξ̃

andυ̃. Then f:⊆ X ⇉Y is polytime(ξ,υ)–computable iff it is second-order polytime(ξ̃, υ̃)–
computable.

⋆⋆ in [3] called aδ
�

–name



e) EvaluationLip[0;1]× [0;1] ∋ ( f ,x) 7→ f (x) is (ρD⊓L× ρ̃, ρ̃)–computable in second-order
polytime.

f) EvaluationC[0;1]× [0;1]∋ ( f ,x) 7→ f (x) is ([̃ρ→ρ]× ρ̃, ρ̃)–computable in second-order poly-
time.

Definition 6.8. a) WritePRED⊆ LM for the class ofψ : Σ∗ →{0,1}.
b) LetP2 denote the class of̃F :⊆ LM → PREDcomputable by an oracle Type-2 Machine in

second-order polytime.
c) LetNP

2 denote the class of̃F :⊆ LM → PREDcomputable by a non-deterministic oracle
Type-2 Machine in second-order polytime.

d) We may identify ãF :⊆ LM → PREDwith the set
{

(ψ,~v) : ψ ∈ dom(F̃),~v∈ Σ∗, F̃(ψ,~v) = 1
}

considered as apromise(second-order decision) problem.

Example 6.9 The following problemEXIST2 belongs toNP
2 but not toP2:

{

(P,~x) : P∈ PRED, ∃~y∈ Σ|~x| : P(〈~x,~y〉) = 1
}

6.5 Reductions

Definition 6.10. Fix spaces A,B,X,Y with respective (ordinary or second-order) representations
α,β,ξ,υ. Consider (possibly multivalued but total) functions f: A⇉ B and g: X ⇉Y.

a) Call f computably (α,β,ξ,υ)–reducible to g if there exist multi-functions r: A⇉X, (α,ξ)–
computable, and s: Y × A ⇉ B, (υ × α,β)–computable, such that for all a∈ A it holds

s
(

g
(

r(a)
)

,a
)

⊆ f (a).

b) The above functions r and s constitute a(second-order) polytime reduction if they are
(second-order) polytime computable.

Example 6.11 Consider the following multivalued mappings:

– LLPO : {0,1}ω ∋ σ̄ Z⇒















{0ω} : ∃!n : σn = 1, n even
{1ω} : ∃!n : σn = 1, n odd

{0ω,1ω} : ∀n : σn = 0
{} : ∃n 6= m : σn = 1 = σm

– BI : {(a,b) : 0≤ a≤ b≤ 1} ∋ (a,b) Z⇒ y∈ [a,b] ⊆ [0;1]
– IVT :

{

f : [0;1]→ [−1;1] continuous s.t. f(0)< 0< f (1)
}

∋ f Z⇒ x∈ f−1[0] ⊆ [0;1]

a) EveryF̃ ∈NP
2 is second-order polytime reducible toEXIST2.

b) MAX : C[0;1]→C[0;1] is 2nd-order polytime
(

[̃ρ→ρ],[̃ρ→ρ], id, id
)

–reducible toEXIST2

c) andEXIST2 is second-order polytime
(

id, id,[̃ρ→ρ],[̃ρ→ρ]
)

–reducible toMAX |C∞[0;1].
d) LLPO is not computable;

BI is not(ρ<×ρ>,ρ)–computable andIVT is not
(

[ρ→ρ],ρ
)

–computable.
e) LLPO is (id, id,ρ<×ρ>,ρ)–reducible toBI.
f) IVT is

(

[ρ→ρ],ρ,ρ<×ρ>,ρ
)

–reducible toBI.
g) BI is

(

ρ<×ρ>,ρ, [ρ→ρ],ρ
)

–reducible toIVT.



7 A View on the Practical Side:iRRAM

– Restricted tof : [0;1]→ R with f (0)< 0< f (1) and auniqueroot,
this root can be found computably: How?

– REALsemantics provided byiRRAMvia automatic re-iteration
– multivalued intrinsic functions;

e.g.bool bound (const REAL& x, const long k) where

bound (x,k) =







true : |x| ≤ 2k−2

false : |x|> 2k

true or false : 2k ≥ |x|> 2k−2

– lazy Booleans and branching on multivalued tests
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