Computable Analysis

SS 2013, Exercise Sheet #10

EXERCISE 18:

- a) Let *P* denote a second-order polynomial in $n \in \mathbb{N}$ and in $\lambda \in \mathbb{N}^{\mathbb{N}}$. Prove by structural induction on *P* that, for $\lambda \in \mathbb{N}[N]$,
 - i) $P(n,\lambda)$ is a polynomial in *n*
 - ii) whose degree depends only on $deg(\lambda)$ and
 - iii) that $\mathbb{N} \ni d \mapsto \deg P(n, N^d)$ is a polynomial in *d*.
- b) Theorem 4.7h) in the script asserts that the closed image of a closed $\psi_{<}^{d}$ -computable set under a computable function is again $\psi_{<}^{d}$ -computable. We also know from Exercise 13c) that intersection of non-empty closed sets is $(\psi_{>}^{d} \times \psi_{>}^{d}, \psi_{>}^{d})$ -computable.
 - i) Prove that the image of compact subsets under a computable function is $\psi_{>}^{d}$ -computable. More precisely use Theorem 4.7j+k) to establish that $C(\mathbb{R}^{d},\mathbb{R}^{k}) \times \mathcal{A}^{(d)} \ni (f,A) \mapsto f[A \cap [0;1]^{d}] \in \mathcal{A}^{(k)}$ is $([\rho^{d} \rightarrow \rho^{k}] \times \psi_{>}^{d}, \psi_{>}^{k})$ -computable.
 - ii) How about $(\psi_{>}, \psi_{>})$ -computability of the mapping $A \mapsto \sin[A]$ for arbitrary compact $A \subseteq \mathbb{R}$?
- c) The lecture constructed a $\psi_{>}$ -computable closed non-empty $A \subseteq [0; 1]$ containing no computable point.
 - i) Prove that every $\psi_{>}$ -computable closed non-empty *convex* $C \subseteq [0; 1]$ contains a computable point.
 - ii) Generalize i) to $\psi^d_{>}$ -computable closed non-empty convex $C \subseteq [0; 1]^d$. Hint: induction on *d* using b i) and Exercise 13c).