Computable Analysis

SS 2013, Exercise Sheet \#8

EXERCISE 16:

a) Let $\tilde{\xi}: \subseteq \mathrm{LM} \rightarrow X$ and $\tilde{v}: \subseteq \mathrm{LM} \rightarrow Y$ be second-order representations.

Define the product second-order representation $\tilde{\xi} \times \tilde{v}$ of $X \times Y$.
b) Prove that both addition $+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and multiplication are second-order polytime ($\tilde{\rho} \times \tilde{\rho}, \tilde{\rho}$)-computable. How about exponentiation?
c) For ordinary representations ξ of X and v of Y consider the induced second-order representations $\tilde{\xi}$ and \tilde{v} according to the lecture.
For an arbitrary but fixed $f: \subseteq X \rightrightarrows Y$ prove that polytime (ξ, v)-computability is equivalent to second-order polytime ($\tilde{\xi}, \tilde{v}$)-computability.
d) Verify that second-order polynomials are closed under both kinds of composition

$$
\begin{equation*}
(Q \circ P)(n, \lambda):=Q(P(n, \lambda), \lambda) \quad \text { and } \quad(Q \bullet P)(n, \lambda):=Q(n, P(\cdot, \lambda)) \tag{1}
\end{equation*}
$$

e) Explore the asymptotic growth of $n \mapsto P(n, \lambda)$ for linearly bounded $\lambda: n \mapsto n+c$ in terms of n and c. How about $\lambda: n \mapsto a \cdot n+c$? Prove that, whenever λ is a polynomial (of degree d, say) then so is $n \mapsto P(n, \lambda)$. How does its degree vary with d ?

