Computable Analysis

SS 2013, Exercise Sheet \#5

EXERCISE 13:

a) Let $\|\cdot\|$ in Equation (4) of the script denote any fixed computable norm.

Let $\|\cdot\|^{\prime}$ denote some other norm on \mathbb{R}^{d} with induced representation $\psi^{\prime d}$. Then i) $\psi^{d} \preceq \psi_{>}^{\prime d} \quad$ and ii) $\psi_{<}^{d} \preceq \psi_{<}^{\prime d}$.
b) Prove that union $\mathcal{A}^{(d)} \times \mathcal{A}^{(d)} \ni(A, B) \mapsto A \cup B \in \mathcal{A}^{(d)}$ is $\left(\psi_{<}^{d} \times \psi_{<}^{d}, \psi_{<}^{d}\right)$-computable.
c) How about intersection (under what reasonable restrictions)?
d) Not using Theorem 4.7j) from the script, prove that $f^{-1}[0]$ is $\psi_{>}^{d}$-computable for every computable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
e) Prove that $\{\emptyset\}$ is $\left.\psi^{d}\right|^{[0 ; 1]^{d}}$-r.e.

Hint: Cmp. the proof to Exercise 2...

