Computable Analysis

SS 2013, Exercise Sheet \#4

EXERCISE 11:

Fix representations α of X and β of Y and γ of Z.
a) Prove that type conversion

$$
R_{\alpha \times \beta, \gamma}[X \times Y, Z] \times X \ni(g, x) \mapsto(Y \ni y \mapsto g(x, y) \in Z) \in R_{\beta, \gamma}[Y, Z]
$$

is well-defined and $([\alpha \times \beta \rightarrow \gamma] \times \alpha,[\beta \rightarrow \gamma])$-computable.
b) Also the converse conversion

$$
\begin{aligned}
R_{\alpha,[\beta-\gamma]}\left[X, R_{\beta, \gamma}[Y, Z]\right] \ni(X \ni x & \left.\mapsto g(x, \cdot) \in R_{\beta, \gamma}[Y, Z]\right) \\
& \mapsto(X \times Y \ni(x, y) \mapsto g(x, y) \in Z) \in R_{\alpha \times \beta, \gamma}[X \times Y, Z]
\end{aligned}
$$

is well-defined and $([\alpha \rightarrow[\beta \rightarrow \gamma]],[\alpha \times \beta \rightarrow \gamma])$-computable.

EXERCISE 12:

a) Prove that the (discontinuous) Heaviside Function $h: \mathbb{R} \rightarrow[0 ; 1]$ is $\left(\rho_{<,}, \rho_{<}\right)$-computable, where

$$
h(x)=0 \text { for } x \leq 0 \quad \text { and } \quad h(x)=1 \text { for } x>0 .
$$

b) Prove that every ($\rho, \rho_{<}$)-computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is lower semi-continuous.
c) Prove that every $\left(\rho_{<}, \rho\right)$-computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is constant.
d) Prove $\rho_{<} \npreceq \rho_{>}$using a discontinuity/adversary argument.

