Computable Analysis

SS 2013, Exercise Sheet #3

EXERCISE 8:

Recall that the Halting Problem is a subset of integers since every Turing machine \mathcal{M} can be assigned some code $\langle \mathcal{M} \rangle$, called its Gödel Index, such that the 'simulation' mapping $\mathbb{N} \times \mathbb{N} \ni (\langle \mathcal{M} \rangle, x) \mapsto \mathcal{M}(x)$ is computable. Now call $f : [0; 1] \to \mathbb{R}$ Markov computable if there exists a Turing machine *converting* every Gödel index of some \mathcal{M} computing a real number $x \in [0; 1]$ into the Gödel index of some \mathcal{N} computing f(x).

- a) Show that every computable $f: [0,1] \to \mathbb{R}$ is Markov computable.
- b) Prove that Markov computability implies sequential computability (Exercise 6).

EXERCISE 9:

- a) Formalize real number by approximation up to prescribable *relative* error. Make sure that 0 and 1 are relatively computable numbers. Compare the set of relatively computable numbers with \mathbb{R}_c . Is addition a relatively computable operation?
- b) Prove that the open interval $(a,b) \subseteq \mathbb{R}$ is ρ -r.e. iff *a* is $\rho_>$ -computable and *b* is $\rho_<$ -computable.

EXERCISE 10:

Call $\vec{u} \in \{0,1\}^*$ an initial segment of $\vec{v} \in \{0,1\}^*$ (and write " $\vec{u} \sqsubseteq \vec{v}$ ") if there exists $\vec{w} \in \{0,1\}^*$ with $\vec{v} = \vec{u} \circ \vec{w}$. Similarly write " $\vec{u} \sqsubseteq \vec{v}$ " if $\vec{v} = \vec{u} \circ \vec{w}$ for $\vec{v} \in \{0,1\}^{\omega}$ and some $\vec{w} \in \{0,1\}^{\omega}$. For $\vec{\sigma} \in \{0,1\}^{\omega}$ abbreviate $\vec{\sigma}|_{\leq n} := (\sigma_1, \dots, \sigma_n) \in \{0,1\}^n$. We say that $f : \{0,1\}^* \to \{0,1\}^*$ is monotone if it holds

$$\forall \vec{u}, \vec{v}: \quad \vec{u} \sqsubseteq \vec{v} \Rightarrow f(\vec{u}) \sqsubseteq f(\vec{v})$$
.

- a) Suppose f is also unbounded on $\bar{\sigma} \in \{0,1\}^{\omega}$ in that the length $|f(\bar{\sigma}|_{\leq n})|$ is unbounded in n. Show that there exists precisely one $\bar{\tau} \in \{0,1\}^{\omega}$ (denoted by $\bar{\tau} = \sup_n f(\bar{\sigma}|_{\leq n})$) with $\forall n : f(\bar{\sigma}_{\leq n}) \sqsubseteq \bar{\tau}$.
- b) Suppose f is monotone. Prove that the following function $f_{\omega} :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is continuous:

dom
$$(f_{\omega}) = \{\bar{\sigma} \mid f \text{ unbounded on } \bar{\sigma}\}, \qquad f_{\omega} : \bar{\sigma} \mapsto \sup_{n} f(\bar{\sigma}|_{\leq n})$$

c) Suppose $F :\subseteq \{0,1\}^{\omega} \to \{0,1\}^{\omega}$ is continuous. Construct some monotone f with $f_{\omega}|_{\operatorname{dom}(F)} = F$.