Computable Analysis

SS 2013, Exercise Sheet #2

EXERCISE 5:

The lecture constructed a computable function $f \in C^1[0; 1]$ with uncomputable derivative. Prove that every computable $f \in C^2[0; 1]$ has a computable derivative!

EXERCISE 6:

Call $f: [0;1] \to \mathbb{R}$ sequentially computable if, for every computable sequence (x_m) in [0;1], $f(x_m)$ is a computable sequence.

- a) Show that every computable $f: [0,1] \to \mathbb{R}$ is sequentially computable.
- b) Let (x_m) be a computable sequence such that $\{m : x_m < 1\}$ is infinite. Prove that there exists a computable, strictly increasing integer sequence $(m_k)_k$ containing all m with $x_m < 1$ and satisfying $x_{m_k} < 2$ for all k.
- c) Recall from the lecture the computable sequence (x_m) ∈ [0;1] such that {m : x_m ≠ 0} = H, the Halting problem.
 Now let f : [0;1] → ℝ be sequentially computable and (x_m) a computable sequence in [0;1] with computable limit x₀. Conclude that f(x_m) converges to f(x₀) ∈ ℝ_c.
- d) Let $f: [0;1] \to \mathbb{R}$ be sequentially computable. Prove that, to every computable $x \in [0;1]$ and $\varepsilon, \delta > 0$, there exists some $q \in \mathbb{Q} \subseteq \mathbb{R}_c$ with $|x q| < \delta$ and $|f(x) f(q)| < \varepsilon$. Hint: Consider the sequence $f(q)_{q \in \mathbb{Q} \cap [0;1]}$ and recall that *in*equality is semi-decidable.
- e) Suppose $x_0 \in [0; 1]$ is computable and let (x_m) denote a (not necessarily computable) sequence in \mathbb{R}_c with $|x_m x_0| \le 2^{-m-1}$ and $|f(x_m) y| > 2\varepsilon$ for all *m*. Prove that there exists a computable rational sequence (q_n) with $|x_0 q_n| \le 2^{-n}$ and $|f(q_n) y| > \varepsilon$.
- f) Let $f: [0;1] \to \mathbb{R}$ be sequentially computable. Conclude that the restriction $f|_{\mathbb{R}_c}$ is continuous.

EXERCISE 7:

Call $f : [0;1] \to \mathbb{R}$ naively computable if there exists an algorithm converting any convergent rational sequence $q_n \to x \in [0;1]$ into a convergent rational sequence $p_m \to f(x)$.

- a) Show that every computable $f : [0; 1] \to \mathbb{R}$ is naively computable.
- b) Prove that the Heaviside function is not naively computable.
- c) More generally every naively computable $f : [0;1] \rightarrow \mathbb{R}$ is continuous.