Computable Analysis

SS 2013, Exercise Sheet \#2

EXERCISE 5:

The lecture constructed a computable function $f \in C^{1}[0 ; 1]$ with uncomputable derivative. Prove that every computable $f \in C^{2}[0 ; 1]$ has a computable derivative!

EXERCISE 6:

Call $f:[0 ; 1] \rightarrow \mathbb{R}$ sequentially computable if, for every computable sequence $\left(x_{m}\right)$ in $[0 ; 1]$, $f\left(x_{m}\right)$ is a computable sequence.
a) Show that every computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is sequentially computable.
b) Let $\left(x_{m}\right)$ be a computable sequence such that $\left\{m: x_{m}<1\right\}$ is infinite. Prove that there exists a computable, strictly increasing integer sequence $\left(m_{k}\right)_{k}$ containing all m with $x_{m}<1$ and satisfying $x_{m_{k}}<2$ for all k.
c) Recall from the lecture the computable sequence $\left(x_{m}\right) \in[0 ; 1]$ such that $\left\{m: x_{m} \neq 0\right\}=H$, the Halting problem.
Now let $f:[0 ; 1] \rightarrow \mathbb{R}$ be sequentially computable and $\left(x_{m}\right)$ a computable sequence in $[0 ; 1]$ with computable limit x_{0}. Conclude that $f\left(x_{m}\right)$ converges to $f\left(x_{0}\right) \in \mathbb{R}_{\mathrm{c}}$.
d) Let $f:[0 ; 1] \rightarrow \mathbb{R}$ be sequentially computable. Prove that, to every computable $x \in[0 ; 1]$ and $\varepsilon, \delta>0$, there exists some $q \in \mathbb{Q} \subseteq \mathbb{R}_{\mathrm{c}}$ with $|x-q|<\delta$ and $|f(x)-f(q)|<\varepsilon$. Hint: Consider the sequence $f(q)_{q \in \mathbb{Q} \cap[0 ; 1]}$ and recall that inequality is semi-decidable.
e) Suppose $x_{0} \in[0 ; 1]$ is computable and let $\left(x_{m}\right)$ denote a (not necessarily computable) sequence in \mathbb{R}_{c} with $\left|x_{m}-x_{0}\right| \leq 2^{-m-1}$ and $\left|f\left(x_{m}\right)-y\right|>2 \varepsilon$ for all m. Prove that there exists a computable rational sequence $\left(q_{n}\right)$ with $\left|x_{0}-q_{n}\right| \leq 2^{-n}$ and $\left|f\left(q_{n}\right)-y\right|>\varepsilon$.
f) Let $f:[0 ; 1] \rightarrow \mathbb{R}$ be sequentially computable. Conclude that the restriction $\left.f\right|_{\mathbb{R}_{c}}$ is continuous.

EXERCISE 7:

Call $f:[0 ; 1] \rightarrow \mathbb{R}$ naively computable if there exists an algorithm converting any convergent rational sequence $q_{n} \rightarrow x \in[0 ; 1]$ into a convergent rational sequence $p_{m} \rightarrow f(x)$.
a) Show that every computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is naively computable.
b) Prove that the Heaviside function is not naively computable.
c) More generally every naively computable $f:[0 ; 1] \rightarrow \mathbb{R}$ is continuous.

