Computable Analysis

SS 2013, Exercise Sheet #1

EXERCISE 1:

Prove the following (nonuniform) effective intermediate value theorem: A computable function $f : [0;1] \rightarrow [-1;1]$ with $f(0) \cdot f(1) < 0$ has a computable root.

EXERCISE 2:

Let $(r_m)_m$ and $(\varepsilon_m)_m$ be computable rational sequences such that

$$[0;1] \setminus \bigcup_m (r_m - \varepsilon_m, r_m + \varepsilon_m) = \{x_0\}.$$

Conclude that this x_0 is a computable real number.

EXERCISE 3:

Prove that every computable function $f : [0;1] \to \mathbb{R}$ with finitely (or countably) many roots has a computable root.

EXERCISE 4:

Let \mathbb{R}_c denote the set of computable reals. Prove that \mathbb{R}_c is a *real closed* field.