Computable Analysis

SS 2013, Exercise Sheet \#1

EXERCISE 1:

Prove the following (nonuniform) effective intermediate value theorem:
A computable function $f:[0 ; 1] \rightarrow[-1 ; 1]$ with $f(0) \cdot f(1)<0$ has a computable root.

EXERCISE 2:

Let $\left(r_{m}\right)_{m}$ and $\left(\varepsilon_{m}\right)_{m}$ be computable rational sequences such that

$$
[0 ; 1] \backslash \bigcup_{m}\left(r_{m}-\varepsilon_{m}, r_{m}+\varepsilon_{m}\right)=\left\{x_{0}\right\}
$$

Conclude that this x_{0} is a computable real number.

EXERCISE 3:

Prove that every computable function $f:[0 ; 1] \rightarrow \mathbb{R}$ with finitely (or countably) many roots has a computable root.

EXERCISE 4:

Let \mathbb{R}_{c} denote the set of computable reals. Prove that \mathbb{R}_{c} is a real closed field.

