Spektraltheorie und Operatoralgebren 7. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Burkhard Kümmerer
Walter Reußwig

SS 2013 31. Mai 2013

Übungen

Aufgabe G32 (Die Gruppe unitärer Elemente einer C*-Algebra mit Eins)

Sei \mathscr{A} eine C*-Algebra mit Eins. Wir definieren $\mathscr{U}(\mathscr{A}) := \{u \in \mathscr{A} : u^*u = \mathbb{1} = uu^*\}$. Es ist klar, dass $\mathscr{U}(\mathscr{A})$ eine Gruppe definiert. Weiter erklären wir folgende Relation auf $\mathscr{U}(\mathscr{A})$: Wir nennen $u, v \in \mathscr{U}(\mathscr{A})$ homotop, wenn es einen stetigen Weg $\gamma : [0,1] \to \mathscr{U}(\mathscr{A})$ mit $\gamma(0) = u$ und $\gamma(1) = v$ gibt. Sind u und v homotop, so schreiben wir $u \sim v$. Die Menge aller zu $\mathbb{1}$ homotopen Elemente bezeichnen wir mit $\mathscr{U}_0(\mathscr{A})$.

- (a) Zeigen Sie, dass die Multiplikation $\mathscr{U}(\mathscr{A}) \times \mathscr{U}(\mathscr{A}) \ni (u,v) \mapsto u \cdot v \in \mathscr{U}(\mathscr{A})$ stetig ist. Zeigen Sie, dass ebenso die Inversion $\mathscr{U}(\mathscr{A}) \ni u \mapsto u^{-1} \in \mathscr{U}(\mathscr{A})$ stetig ist. Damit bildet $\mathscr{U}(\mathscr{A})$ also eine toplogische Gruppe.
- (b) Zeigen Sie, dass die Relation \sim eine Äquivalenzrelation ist.
- (c) Sei $a \in \mathcal{A}_h$ beliebig. Zeigen Sie, dass $u := \exp(ia)$ unitär ist und $u \in \mathcal{U}_0(\mathcal{A})$ gilt.
- (d) Zeigen Sie mit Hilfe des Spektralsatzes, dass aus ||u 1|| < 2 für $u \in \mathcal{U}(\mathcal{A})$ folgt, dass ein $a \in \mathcal{A}_h$ existiert mit $u = \exp(ia)$.
- (e) Zeigen Sie, dass für $u, v \in \mathcal{U}(\mathcal{A})$ aus ||u v|| < 2 die Abschätzung $||v^*u 1|| < 2$ folgt. Folgern Sie insbesondere $u \sim v$.
- (f) Zeigen Sie, dass $U_0(\mathcal{A})$ offen und abgeschlossen in $\mathcal{U}(\mathcal{A})$ und zusammenhängend ist.
- (g) Sei $V := \{ \exp(ia_1) \cdot \exp(ia_2) \cdot ... \cdot \exp(ia_n) : n \in \mathbb{N}, a_1, a_2, ..., a_n \in \mathcal{A}_h \}$. Zeigen Sie, dass V offen und abgeschlossen in $\mathcal{U}_0(\mathcal{A})$ ist. Folgern Sie $V = \mathcal{U}_0(\mathcal{A})$.
- (h) Bestimmen Sie $\mathcal{U}_0(M_n)$ für die C*-Algebra der komplexen $n \times n$ -Matrizen.
- (i) Sei $\mathscr{A} = \mathscr{C}(\mathbb{T})$. Zeigen Sie, dass das Element $f \in \mathscr{A}$ mit f(z) = z nicht in $\mathscr{U}_0(\mathscr{A})$ liegt.
- (j) Finden Sie ein Beispiel für eine C*-Algebra \mathscr{A} , so dass ein unitäres Element $u \in \mathscr{U}(\mathscr{A})$ existiert mit $\sigma(u) = \mathbb{T}$ und $u \sim \mathbb{1}$.

Wenn Sie möchten: Zeigen Sie, dass $\mathcal{U}_0(\mathcal{A})$ eine normale Untergruppe von $\mathcal{U}(\mathcal{A})$ ist.

Aufgabe G33 (Approximationen von Projektionen)

Sei \mathscr{A} eine unitale C*-Algebra, sei $0 < \varepsilon \le \frac{1}{4}$ und sei $a \in \mathscr{A}$ ein positives Element mit $0 \le a \le 1$ und $||a^2 - a|| < \varepsilon$.

(a) Zeigen Sie, dass es ein $\delta > 0$ gibt, so dass für das Spektrum von a gilt:

$$\sigma(a) \subseteq \left[0, \frac{1}{2} - \delta\right] \cup \left[\frac{1}{2} + \delta, 1\right].$$

- (b) Zeigen Sie: Es gibt eine stetige Funktion $f:[0,1]\to [0,1]$ mit $||f||_{\infty}=1$ und $f(\lambda)\in\{0,1\}$ für alle $\lambda\in\sigma(a)$.
- (c) Zeigen Sie: Das Element p := f(a) definiert eine Projektion und es gilt $||p a|| \le C \cdot \varepsilon$ für eine geeignete Konstante C > 0.

Hinweis: Für $\delta = \frac{1}{2}\sqrt{1-4\varepsilon}$ ergibt sich C=2.

Aufgabe G34 (Mehr über induktive Limes C*-Algebren I)

Sei $(\mathscr{A}_n, \iota_n)_{n \in \mathbb{N}}$ ein induktives System von unitalen C*-Algebren mit induktivem Limes \mathscr{A} . Wir bezeichnen mit $\varphi_n : \mathscr{A}_n \to \mathscr{A}$ die kanonischen *-Homomorphismen. Sei $\varepsilon > 0$. Zeigen Sie folgende Aussagen:

- (a) Ist $x \in \mathcal{A}$ selbstadjungiert, so existiert ein $n \in \mathbb{N}$ und ein selbstadjungiertes Element $x_n \in \mathcal{A}_n$ mit $||x \varphi_n(x_n)|| \le \varepsilon$.
- (b) Ist $x \in \mathcal{A}$ mit $0 \le x \le 1$, so existiert ein $n \in \mathbb{N}$ und ein Element $x_n \in \mathcal{A}_n$ mit $0 \le x_n \le 1$ und $||x \varphi_n(x_n)|| \le \varepsilon$.

Hinweis: Betrachten Sie die stetige Funktion $f : \mathbb{R} \to \mathbb{R}$ mit f(t) = 0 für x < 0, f(t) = t für $0 \le t \le 1$ und f(t) = 1 für t > 1.

(c) Ist $p \in \mathscr{A}$ eine Projektion, so existiert ein $n \in \mathbb{N}$ und es existiert eine Projektion $p_n \in \mathscr{A}_n$ mit $\|p - \varphi_n(p_n)\| \le \varepsilon$.

Eine mögliche Strategie:

- Starten Sie mit einem Element $y \in \mathcal{A}_n$ und $||p \varphi_n(y)|| \le \frac{\varepsilon}{12}$.
- Zeigen Sie $\|\varphi_n(y^2 y)\| \le \frac{\varepsilon}{4}$.
- Finden Sie ein $N \in \mathbb{N}$, so dass für $z := \iota_N \circ ... \circ \iota_n(y)$ gilt: $||z^2 z|| \le \frac{\varepsilon}{4}$.
- Wenden Sie die Aussage aus Aufgabe 33 in der C*-Algebra \mathcal{A}_N an.
- Zeigen Sie, dass die so gefundene Projektion p_N die Abschätzung $\|p-p_N\| \le \varepsilon$ erfüllt.